Abstract:
A circuit arrangement includes a converter having a converter switch and a driver for the converter switch. The driver includes an interface coupling to a dimming apparatus supplying a dimming value. The driver provides an RF signal with a duty ratio at the output of the driver. The driver modifies the RF signal by superposition of a PWM signal such that, in correlation with the supplied dimming value, a predefinable number of periods of the RF signal is chopped from the RF signal. The driver is configured to reduce the duty ratio of the RF signal during at least one predefinable period of the RF signal in order to adjust levels of dimming which correspond to dimming values which are between a first and a second dimming value which differ from one another by at least one period of the RF signal.
Abstract:
A circuit arrangement includes a converter having a converter switch and a driver for the converter switch. The driver includes an interface coupling to a dimming apparatus supplying a dimming value. The driver provides an RF signal with a duty ratio at the output of the driver. The driver modifies the RF signal by superposition of a PWM signal such that, in correlation with the supplied dimming value, a predefinable number of periods of the RF signal is chopped from the RF signal. The driver is configured to reduce the duty ratio of the RF signal during at least one predefinable period of the RF signal in order to adjust levels of dimming which correspond to dimming values which are between a first and a second dimming value which differ from one another by at least one period of the RF signal.
Abstract:
A circuit arrangement for operating a load includes a primary-side switched-mode converter with galvanic isolation of input and output voltage, having: a primary circuit, a secondary circuit and a power transformer, wherein: a first inductor and a second inductor, the first inductor being arranged in the secondary circuit in order to pass the current generated by the transformer when the energy is transferred to the secondary circuit, and the second inductor being interconnected in a measuring circuit. The second inductor is spatially arranged in a stray magnetic field generated by the first inductor; the measuring circuit has an output at which a measuring voltage is output, and the control device is connected to the output of the measuring circuit in order to determine a corresponding current flow from the output measuring voltage, and is configured to control the clocked operation of the switch depending on the current flow determined.
Abstract:
In various embodiments, an electronic operating device for light sources is provided. The electronic operating device may include an input part for inputting an input voltage and an output part for outputting an output voltage and an output current for the light sources. The electronic operating device is configured to operate the output part as a voltage source for a period of time after the input voltage has been applied, and subsequently to operate the output part as a current source after this period of time.
Abstract:
In various embodiments, an electronic operating device for light sources is provided. The electronic operating device may include an input part for inputting an input voltage and an output part for outputting an output voltage and an output current for the light sources. The electronic operating device is configured to operate the output part as a voltage source for a period of time after the input voltage has been applied, and subsequently to operate the output part as a current source after this period of time.