Abstract:
A light module for providing polychromatic light is provided. The light module includes a wavelength conversion element, a first light source for emitting a first light beam in a first wavelength range, and at least one second light source for emitting a second light beam. The element is configured to convert primary light radiated in by the first light beam into a first conversion light and to convert primary light radiated in by the at least one second light beam into a second conversion light. At least the first conversion light and the second conversion light together form a third light beam. The module further includes a control unit configured for predefining a first luminous intensity for the first light source and/or a second luminous intensity for the at least one second light source depending on a measurement of the light color of the third light beam.
Abstract:
A conversion element for the wavelength conversion of electromagnetic radiation from a first wavelength range to electromagnetic radiation from a second wavelength range, which includes longer wavelengths than the first wavelength range, the conversion element includes: a matrix material, the optical refractive index of which is temperature-dependent, and at least two different types of luminophore particles wherein a multiplicity of luminophore particles of each of the types are distributed in the matrix material, luminophore particles of different types differ from one another in terms of average particle size and/or material, the conversion element, upon excitation by electromagnetic radiation from the first wavelength range emits mixed radiation including electromagnetic radiation from the first and the second wavelength range, and the correlated color temperature and/or the color locus of the mixed radiation remain(s) substantially the same when the matrix material is at a temperature of between 25° C. and 150° C.
Abstract:
The lighting device has at least one LED chip that is potted by means of a potting compound, which potting compound has a light-transmissive, castable and curable matrix material comprising scattering volumes as filler material, wherein the scattering volumes are distributed inhomogeneously over a thickness of the potting compound and these scattering volumes have a lower density than the matrix material in its castable state. A method is used for producing a lighting device, which comprises at least one LED chip, by means of at least the following steps: potting the at least one LED chip by means of a potting compound containing scattering volumes, wherein the scattering volumes have a lower density than a matrix material of the potting compound in this state; curing the potting compound so that an inhomogeneous distribution of the scattering volumes is obtained owing to floating of the scattering volumes in the matrix material.
Abstract:
A light module for providing polychromatic light is provided. The light module includes a wavelength conversion element, a first light source for emitting a first light beam in a first wavelength range, and at least one second light source for emitting a second light beam. The element is configured to convert primary light radiated in by the first light beam into a first conversion light and to convert primary light radiated in by the at least one second light beam into a second conversion light. At least the first conversion light and the second conversion light together form a third light beam. The module further includes a control unit configured for predefining a first luminous intensity for the first light source and/or a second luminous intensity for the at least one second light source depending on a measurement of the light color of the third light beam.
Abstract:
Various embodiments may relate to an LED module, including a number of first inherently unpackaged LED chips, which are in each case designed to emit light of a first color at a respective light emission area, and a number of second inherently unpackaged LED chips, which are in each case designed to emit light of a second color, different than the first color, at a respective light emission area. The LED chips are provided jointly in a housing, and the respective light emission area of a second LED chip is at least 25% smaller than the respective light emission area of a first LED chip. The sum of the light emission areas of the first LED chips is at least 50% greater than the sum of the light emission areas of the second LED chips.
Abstract:
The lighting device has at least one LED chip that is potted by means of a potting compound, which potting compound has a light-transmissive, castable and curable matrix material comprising scattering volumes as filler material, wherein the scattering volumes are distributed inhomogeneously over a thickness of the potting compound and these scattering volumes have a lower density than the matrix material in its castable state. A method is used for producing a lighting device, which comprises at least one LED chip, by means of at least the following steps: potting the at least one LED chip by means of a potting compound containing scattering volumes, wherein the scattering volumes have a lower density than a matrix material of the potting compound in this state; curing the potting compound so that an inhomogeneous distribution of the scattering volumes is obtained owing to floating of the scattering volumes in the matrix material.
Abstract:
A conversion element for the wavelength conversion of electromagnetic radiation from a first wavelength range to electromagnetic radiation from a second wavelength range, which includes longer wavelengths than the first wavelength range, the conversion element includes: a matrix material, the optical refractive index of which is temperature-dependent, and at least two different types of luminophore particles wherein a multiplicity of luminophore particles of each of the types are distributed in the matrix material, luminophore particles of different types differ from one another in terms of average particle size and/or material, the conversion element, upon excitation by electromagnetic radiation from the first wavelength range emits mixed radiation including electromagnetic radiation from the first and the second wavelength range, and the correlated color temperature and/or the color locus of the mixed radiation remain(s) substantially the same when the matrix material is at a temperature of between 25° C. and 150° C.
Abstract:
Various embodiments relate to a lighting device with an optoelectronic light source, an optical body downstream thereof for distributing the light, and a diffuser downstream of the latter, onto the light entry surface of which the light emitted by the optical body falls and the light exit surface of which represents a light emission surface of the lighting device. To homogenize the luminous intensity on the light exit surface, in addition to distributing the light with the optical body, the diffuser is not provided to be uniformly scattering to such an extent that light falling thereon in a central region is scattered more intensely than light falling thereon in an edge region.
Abstract:
A light-emitting diode module for emitting white light includes a first light emitting diode chip for generating radiation in the blue spectral range having a first peak wavelength, a second light emitting diode chip for generating radiation in the blue spectral range having a second peak wavelength, a third light emitting diode chip for generating radiation in the red spectral range having a third peak wavelength, a first and a second phosphors disposed downstream of the first and the second light emitting diode chips, respectively. The first light emitting diode chip with the first phosphor generates a first mixed radiation and the second light emitting diode chip with the second phosphor generates a second mixed radiation. The first phosphor exhibits a first absorption maximum at a wavelength greater than the first peak wavelength. The second phosphor exhibits a second absorption maximum at a wavelength less than the second peak wavelength.
Abstract:
Various embodiments may relate to an LED module, including a number of first inherently unpackaged LED chips, which are in each case designed to emit light of a first color at a respective light emission area, and a number of second inherently unpackaged LED chips, which are in each case designed to emit light of a second color, different than the first color, at a respective light emission area. The LED chips are provided jointly in a housing, and the respective light emission area of a second LED chip is at least 25% smaller than the respective light emission area of a first LED chip. The sum of the light emission areas of the first LED chips is at least 50% greater than the sum of the light emission areas of the second LED chips.