Abstract:
Techniques described herein relate to systems and methods of data storage, and more particularly to providing layering of file system functionality on an object interface. In certain embodiments, file system functionality may be layered on cloud object interfaces to provide cloud-based storage while allowing for functionality expected from a legacy applications. For instance, POSIX interfaces and semantics may be layered on cloud-based storage, while providing access to data in a manner consistent with file-based access with data organization in name hierarchies. Various embodiments also may provide for memory mapping of data so that memory map changes are reflected in persistent storage while ensuring consistency between memory map changes and writes. For example, by transforming a file system disk-based storage into cloud-based storage, the file system gains the elastic nature of cloud storage.
Abstract:
Techniques described herein relate to systems and methods of data storage, and more particularly to providing layering of file system functionality on an object interface. In certain embodiments, file system functionality may be layered on cloud object interfaces to provide cloud-based storage while allowing for functionality expected from a legacy applications. For instance, POSIX interfaces and semantics may be layered on cloud-based storage, while providing access to data in a manner consistent with file-based access with data organization in name hierarchies. Various embodiments also may provide for memory mapping of data so that memory map changes are reflected in persistent storage while ensuring consistency between memory map changes and writes. For example, by transforming a ZFS file system disk-based storage into ZFS cloud-based storage, the ZFS file system gains the elastic nature of cloud storage.
Abstract:
Techniques described herein relate to systems and methods of data storage, and more particularly to providing layering of file system functionality on an object interface. In certain embodiments, file system functionality may be layered on cloud object interfaces to provide cloud-based storage while allowing for functionality expected from a legacy applications. For instance, POSIX interfaces and semantics may be layered on cloud-based storage, while providing access to data in a manner consistent with file-based access with data organization in name hierarchies. Various embodiments also may provide for memory mapping of data so that memory map changes are reflected in persistent storage while ensuring consistency between memory map changes and writes. For example, by transforming a ZFS file system disk-based storage into ZFS cloud-based storage, the ZFS file system gains the elastic nature of cloud storage.
Abstract:
Techniques described herein relate to systems and methods of data storage, and more particularly to providing layering of file system functionality on an object interface. In certain embodiments, file system functionality may be layered on cloud object interfaces to provide cloud-based storage while allowing for functionality expected from a legacy applications. For instance, POSIX interfaces and semantics may be layered on cloud-based storage, while providing access to data in a manner consistent with file-based access with data organization in name hierarchies. Various embodiments also may provide for memory mapping of data so that memory map changes are reflected in persistent storage while ensuring consistency between memory map changes and writes. For example, by transforming a ZFS file system disk-based storage into ZFS cloud-based storage, the ZFS file system gains the elastic nature of cloud storage.
Abstract:
Techniques described herein relate to systems and methods of data storage, and more particularly to providing layering of file system functionality on an object interface. In certain embodiments, file system functionality may be layered on cloud object interfaces to provide cloud-based storage while allowing for functionality expected from a legacy applications. For instance, POSIX interfaces and semantics may be layered on cloud-based storage, while providing access to data in a manner consistent with file-based access with data organization in name hierarchies. Various embodiments also may provide for memory mapping of data so that memory map changes are reflected in persistent storage while ensuring consistency between memory map changes and writes. For example, by transforming a ZFS file system disk-based storage into ZFS cloud-based storage, the ZFS file system gains the elastic nature of cloud storage.
Abstract:
Techniques described herein relate to systems and methods of data storage, and more particularly to providing layering of file system functionality on an object interface. In certain embodiments, file system functionality may be layered on cloud object interfaces to provide cloud-based storage while allowing for functionality expected from a legacy applications. For instance, POSIX interfaces and semantics may be layered on cloud-based storage, while providing access to data in a manner consistent with file-based access with data organization in name hierarchies. Various embodiments also may provide for memory mapping of data so that memory map changes are reflected in persistent storage while ensuring consistency between memory map changes and writes. For example, by transforming a ZFS file system disk-based storage into ZFS cloud-based storage, the ZFS file system gains the elastic nature of cloud storage.
Abstract:
Implementations described and claimed herein provide systems and methods for allocating and managing resources for a deduplication table. In one implementation, an upper limit to an amount of memory allocated to a deduplication table is established. The deduplication table has one or more checksum entries, and each checksum entry is associates a checksum with unique data. A new checksum entry corresponding to new unique data is prevented from being added to the deduplication table where adding the new checksum entry will cause the deduplication table to exceed a size limit. The new unique data has a checksum that is different from the checksums in the one or more checksum entries in the deduplication table.
Abstract:
Implementations described and claimed herein provide systems and methods for estimating migration progress. In one implementation, a target file system is initialized to which to migrate existing data from a source file system. An initial amount of data to be migrated to the target file system is estimated based on an examination of in-use space at a root of the source file system. Any mount points for nested file systems in the source file system are identified. An amount of data for each of the nested file systems is estimated based on an examination of in-use space at the mount point for the nested file system. An estimated total amount of data to be migrated from the source file system to the target file system is determined based on the initial amount of data to be migrated and the amount of data for each of the nested file systems.
Abstract:
Implementations of the present disclosure involve a system and/or method for replication size estimation and progress monitoring for a file system residing on a computing system. The replication progress monitoring system obtains a first snapshot of a file system for a first point in time and a second snapshot of the file system for a second point in time. The system may then calculate the difference between the first snapshot size from the second snapshot size and add to the difference the size a released data size. The released data size includes the size of any blocks of data included in the first snapshot and released before the second snapshot was taken. The replication transfer size may then be estimated by adding the snapshot size difference with the released size estimate.
Abstract:
Techniques described herein relate to systems and methods of data storage, and more particularly to providing layering of file system functionality on an object interface. In certain embodiments, file system functionality may be layered on cloud object interfaces to provide cloud-based storage while allowing for functionality expected from a legacy applications. For instance, POSIX interfaces and semantics may be layered on cloud-based storage, while providing access to data in a manner consistent with file-based access with data organization in name hierarchies. Various embodiments also may provide for memory mapping of data so that memory map changes are reflected in persistent storage while ensuring consistency between memory map changes and writes.