Abstract:
Provided are a liquid-phase hydroisomerization system and a process therefor and use thereof. The system comprises a gas-liquid mixer (3), a hydroisomerization reactor (4) and a fractionating column (6). An oil product and hydrogen are mixed as a liquid hydrogen-oil mixture, and are introduced into the hydroisomerization reactor for a hydroisomerization reaction, and after being fractionated, a target product is led out. A supplemental hydrogen-dissolving inner member is provided at least between a group of two adjacent catalyst bed layers in order to supplement hydrogen to the reactants. The process cancels a circulating hydrogen compressor, has a simple process flow, and can be applied to the production of a lubricant base oil by the hydroisomerization of a lubricant raw material or the production of a low freezing point diesel by the hydroisomerization of and the reduction in the freezing point of a diesel raw material.
Abstract:
The present invention relates to a method for preparing a sulfur-resistant catalyst for aromatics saturated hydrogenation, comprising the steps of: preparing noble metal impregnation solutions from a noble metal and deionized water or an acid solution; impregnating a carrier with the impregnation solutions sequentially from high to low concentrations by incipient impregnation; homogenizing, drying, and calcinating to obtain the sulfur-resistant catalyst for aromatics saturated hydrogenation. The catalyst for aromatics saturated hydrogenation prepared by the method according to the present invention is primarily used in processing low-sulfur and high-aromatics light distillate, middle distillate, atmospheric gas oil, and vacuum gas oil. The method according to the present invention is advantageous in that the catalyst for aromatics saturated hydrogenation exhibits good hydrofining performance, superior aromatics saturation performance, high liquid yield of products, as well as excellent desulfurization and sulfur-resistance, and the catalyst has remarkable effects in use and a great prospect of application.
Abstract:
Disclosed are a method for preparing a noble metal hydrogenation catalyst comprising preparing a carrier from a molecular sieve having a 10-member ring structure and/or an amorphous porous material; preparing a noble metal impregnation solution; and preparing noble metal impregnation solutions in a concentration gradient ranging from 0.05 to 5.0 wt % with deionized water, and sequentially impregnating the carrier with the impregnation solutions from low to high concentrations during the carrier impregnation process, or preparing a noble metal impregnation solution at a low concentration ranging from 0.05 to 0.5 wt % and impregnating the carrier by gradually increasing the concentration of the noble metal impregnation solution to 2.0 to 5.0 wt % in the impregnation process, followed by homogenization, drying, and calcination, as well as a noble metal hydrogenation catalyst, use thereof, and a method for preparing lubricant base oil.
Abstract:
Provided are a liquid-phase hydroisomerization system and a process therefor and use thereof. The system comprises a gas-liquid mixer (3), a hydroisomerization reactor (4) and a fractionating column (6). An oil product and hydrogen are mixed as a liquid hydrogen-oil mixture, and are introduced into the hydroisomerization reactor for a hydroisomerization reaction, and after being fractionated, a target product is led out. A supplemental hydrogen-dissolving inner member is provided at least between a group of two adjacent catalyst bed layers in order to supplement hydrogen to the reactants. The process cancels a circulating hydrogen compressor, has a simple process flow, and can be applied to the production of a lubricant base oil by the hydroisomerization of a lubricant raw material or the production of a low freezing point diesel by the hydroisomerization of and the reduction in the freezing point of a diesel raw material.
Abstract:
A hydrogenation method and distillate two-phase hydrogenation reactor in which the size of an upper space of the reactor is greater than that of a lower catalyst bed part. The reactor comprises 2 to 4 catalyst beds. An inner component for gas replenishment and for stripping a liquid-phase stream containing impurities is arranged between at least one adjacent catalyst bed and comprises a separator plate and exhaust pipes. The separator plate is provided with multiple downcomer through holes. The separator plate is connected with a plurality of exhaust pipes. The exhaust pipes are vertically arranged above the separator plate. The top parts of the exhaust pipes are in contact with the lower part of the upper catalyst bed.