Energy dense materials for redox flow batteries

    公开(公告)号:US11335910B1

    公开(公告)日:2022-05-17

    申请号:US17123300

    申请日:2020-12-16

    Abstract: Redox flow battery efficiency and performance may be improved with a high energy density bipyridinium based ionic room-temperature liquid electrolyte. Current electrolytes require solvent to dissolve the redox-active material and a supporting electrolyte to maintain charge balance. A room temperature redox-active electrolyte having intrinsic charge balancing would not need a solvent to form a liquid and would therefore have a higher density of anions and cations involved with charge storage. As such, creating redox-active bipyridinium core ionic materials that are in a liquid form at room temperature or, more particularly, are liquids across the range at which a redox flow battery would operate permit smaller and less costly flow battery design than conventional flow batteries.

    Systems for the catalytic activation of pentane-enriched hydrocarbon mixtures

    公开(公告)号:US10982158B2

    公开(公告)日:2021-04-20

    申请号:US16593476

    申请日:2019-10-04

    Abstract: The present disclosure relates to systems operable to catalytically convert a hydrocarbon feed stream predominantly comprising both isopentane and n-pentane to yield upgraded hydrocarbon products that are suitable for use either as a blend component of liquid transportation fuels or as an intermediate in the production of other value-added chemicals. The hydrocarbon feed stream is isomerized in a first reaction zone to convert at least a portion of the n-pentane to isopentane, followed by catalytic-activation of the isomerization effluent in a second reaction zone with an activation catalyst to produce an activation effluent. The process increases the conversion of the hydrocarbon feed stream to olefins and aromatics, while minimizing the production of C1-C4 light paraffins. Certain embodiments provide for further upgrading of at least a portion of the activation effluent by either oligomerization or alkylation.

    SYSTEMS FOR ISOMERIZATION AND CATALYTIC ACTIVATION OF PENTANE-ENRICHED HYDROCARBON MIXTURES

    公开(公告)号:US20200339888A1

    公开(公告)日:2020-10-29

    申请号:US16855367

    申请日:2020-04-22

    Abstract: Systems operable to produce liquid transportation fuels by converting a hydrocarbon feed stream comprising both isopentane and n-pentane. The system comprises a first separator operable to separate a hydrocarbon feed stream into a first fraction that predominantly comprises isopentane and a second fraction that predominantly comprises n-pentane and some C6 paraffins. An isomerization reactor isomerizes the second fraction to convert at least a portion of the n-pentane to isopentane. The resulting isomerization effluent is combined with the hydrocarbon feed stream, allowing the isopentane produced in the isomerization reactor to be separated into the first fraction in the first separator. An activation reactor catalytically activates the first fraction to produce an activation effluent comprising olefins and aromatics. Certain embodiments additionally comprise either an oligomerization reactor or and alkylation reactor operable to further upgrade the activation effluent, thereby enhancing yields.

    Energy dense materials for redox flow batteries

    公开(公告)号:US11437641B2

    公开(公告)日:2022-09-06

    申请号:US17123326

    申请日:2020-12-16

    Abstract: Redox flow battery efficiency and performance may be improved with a high energy density bipyridinium based ionic room-temperature liquid electrolyte. Current electrolytes require solvent to dissolve the redox-active material and a supporting electrolyte to maintain charge balance. A room temperature redox-active electrolyte having intrinsic charge balancing would not need a solvent to form a liquid and would therefore have a higher density of anions and cations involved with charge storage. As such, creating redox-active bipyridinium core ionic materials that are in a liquid form at room temperature or, more particularly, are liquids across the range at which a redox flow battery would operate permit smaller and less costly flow battery design than conventional flow batteries.

    ENERGY DENSE MATERIALS FOR REDOX FLOW BATTERIES

    公开(公告)号:US20220190374A1

    公开(公告)日:2022-06-16

    申请号:US17123326

    申请日:2020-12-16

    Abstract: Redox flow battery efficiency and performance may be improved with a high energy density bipyridinium based ionic room-temperature liquid electrolyte. Current electrolytes require solvent to dissolve the redox-active material and a supporting electrolyte to maintain charge balance. A room temperature redox-active electrolyte having intrinsic charge balancing would not need a solvent to form a liquid and would therefore have a higher density of anions and cations involved with charge storage. As such, creating redox-active bipyridinium core ionic materials that are in a liquid form at room temperature or, more particularly, are liquids across the range at which a redox flow battery would operate permit smaller and less costly flow battery design than conventional flow batteries.

Patent Agency Ranking