-
公开(公告)号:US20240310582A1
公开(公告)日:2024-09-19
申请号:US18122392
申请日:2023-03-16
Applicant: Psiquantum, Corp.
Inventor: Bryan Park , Koustuban Ravi , Eric Dudley , Mihai Dorian Vidrighin
IPC: G02B6/293
CPC classification number: G02B6/29355
Abstract: A notch filter circuit includes a wavelength demultiplexer, a first pump rejection filter coupled to the wavelength demultiplexer, and a second pump rejection filter coupled to the wavelength demultiplexer. The notch filter circuit also includes a first notch filter arm coupled to the first pump rejection filter and including a first chain of asymmetric Mach-Zehnder interferometers (MZIs) and a second notch filter arm coupled to the second pump rejection filter and including a second chain of asymmetric MZIs.
-
公开(公告)号:US11874496B2
公开(公告)日:2024-01-16
申请号:US17987741
申请日:2022-11-15
Applicant: Psiquantum, Corp.
Inventor: Koustuban Ravi , Mark Thompson , Eric Dudley
CPC classification number: G02B6/12007 , G02B6/1228 , G02B6/13 , G02B6/29355 , G02B2006/12061
Abstract: A photonic switch includes a first waveguide including a first region extending between a first coupler section and a second coupler section and a second region extending between the second coupler section and a third coupler section. The photonic switch also includes a second waveguide including a first portion extending between the first coupler section and the second coupler section, the first portion including at least two first compensation sections each having a different waveguide width, and a second portion extending between the second coupler section and the third coupler section, the second portion including at least two second compensation sections each having a different waveguide width. The photonic switch further includes at least one variable phase-shifter disposed in at least one of the first waveguide or the second waveguide.
-
公开(公告)号:US20230152515A1
公开(公告)日:2023-05-18
申请号:US17987741
申请日:2022-11-15
Applicant: Psiquantum, Corp.
Inventor: Koustuban Ravi , Mark Thompson , Eric Dudley
CPC classification number: G02B6/12007 , G02B6/1228 , G02B6/13 , G02B2006/12061 , G02B6/29355
Abstract: A photonic switch includes a first waveguide including a first region extending between a first coupler section and a second coupler section and a second region extending between the second coupler section and a third coupler section. The photonic switch also includes a second waveguide including a first portion extending between the first coupler section and the second coupler section, the first portion including at least two first compensation sections each having a different waveguide width, and a second portion extending between the second coupler section and the third coupler section, the second portion including at least two second compensation sections each having a different waveguide width. The photonic switch further includes at least one variable phase-shifter disposed in at least one of the first waveguide or the second waveguide.
-
公开(公告)号:US20200371287A1
公开(公告)日:2020-11-26
申请号:US16599526
申请日:2019-10-11
Applicant: Psiquantum, Corp.
Inventor: Koustuban Ravi , Mark Thompson , Eric Dudley
Abstract: A Mach-Zehnder interferometer (MZI) filter comprising one or more passive compensation structures are described. The passive compensation structures yield MZI filters that are intrinsically tolerant to perturbations in waveguide dimensions and/or other ambient conditions. The use of n+1 waveguide widths can mitigate n different sources of perturbation to the filter. The use of at least three different waveguide widths for each Mach-Zehnder waveguide can alleviate sensitivity of filter performance to random width or temperature variations. A tolerance compensation portion is positioned between a first coupler section and a second coupler section, wherein the tolerance compensation portion includes a first compensation section having a second width, a second compensation section having a third width and a third compensation section having a fourth width, wherein the fourth width is greater than the third width and the third width is greater than the second width.
-
公开(公告)号:US11703316B2
公开(公告)日:2023-07-18
申请号:US17538926
申请日:2021-11-30
Applicant: Psiquantum, Corp.
Inventor: Koustuban Ravi
CPC classification number: G01B9/02049 , G02B6/2935 , G02B2006/12159
Abstract: A Mach-Zehnder interferometer (MZI) filter comprising one or more passive compensation structures are described. The passive compensation structures yield MZI filters that are intrinsically tolerant to perturbations in waveguide dimensions and/or other ambient conditions. The use of n+1 waveguide widths can mitigate n different sources of perturbation to the filter. The use of at least three different waveguide widths for each Mach-Zehnder waveguide can alleviate sensitivity of filter performance to random width or temperature variations. A tolerance compensation portion is positioned between a first coupler section and a second coupler section, wherein the tolerance compensation portion includes a first compensation section having a second width, a second compensation section having a third width and a third compensation section having a fourth width, wherein the fourth width is greater than the third width and the third width is greater than the second width.
-
公开(公告)号:US11543587B2
公开(公告)日:2023-01-03
申请号:US17345724
申请日:2021-06-11
Applicant: Psiquantum, Corp.
Inventor: Koustuban Ravi , Mark Thompson , Eric Dudley
Abstract: A Mach-Zehnder interferometer (MZI) filter comprising one or more passive compensation structures are described. The passive compensation structures yield MZI filters that are intrinsically tolerant to perturbations in waveguide dimensions and/or other ambient conditions. The use of n+1 waveguide widths can mitigate n different sources of perturbation to the filter. The use of at least three different waveguide widths for each Mach-Zehnder waveguide can alleviate sensitivity of filter performance to random width or temperature variations. A tolerance compensation portion is positioned between a first coupler section and a second coupler section, wherein the tolerance compensation portion includes a first compensation section having a second width, a second compensation section having a third width and a third compensation section having a fourth width, wherein the fourth width is greater than the third width and the third width is greater than the second width.
-
公开(公告)号:US20220003928A1
公开(公告)日:2022-01-06
申请号:US17345724
申请日:2021-06-11
Applicant: Psiquantum, Corp.
Inventor: Koustuban Ravi , Mark Thompson , Eric Dudley
Abstract: A Mach-Zehnder interferometer (MZI) filter comprising one or more passive compensation structures are described. The passive compensation structures yield MZI filters that are intrinsically tolerant to perturbations in waveguide dimensions and/or other ambient conditions. The use of n+1 waveguide widths can mitigate n different sources of perturbation to the filter. The use of at least three different waveguide widths for each Mach-Zehnder waveguide can alleviate sensitivity of filter performance to random width or temperature variations. A tolerance compensation portion is positioned between a first coupler section and a second coupler section, wherein the tolerance compensation portion includes a first compensation section having a second width, a second compensation section having a third width and a third compensation section having a fourth width, wherein the fourth width is greater than the third width and the third width is greater than the second width.
-
公开(公告)号:US10534130B1
公开(公告)日:2020-01-14
申请号:US16514832
申请日:2019-07-17
Applicant: Psiquantum, Corp.
Inventor: Koustuban Ravi , Mark Thompson , Eric Dudley
Abstract: A Mach-Zehnder interferometer (MZI) filter comprising one or more passive compensation structures are described. The passive compensation structures yield MZI filters that are intrinsically tolerant to perturbations in waveguide dimensions and/or other ambient conditions. The use of n+1 waveguide widths can mitigate n different sources of perturbation to the filter. The use of at least three different waveguide widths for each Mach-Zehnder waveguide can alleviate sensitivity of filter performance to random width or temperature variations. A tolerance compensation portion is positioned between a first coupler section and a second coupler section, wherein the tolerance compensation portion includes a first compensation section having a second width, a second compensation section having a third width and a third compensation section having a fourth width, wherein the fourth width is greater than the third width and the third width is greater than the second width.
-
公开(公告)号:US20240027179A1
公开(公告)日:2024-01-25
申请号:US18204181
申请日:2023-05-31
Applicant: Psiquantum, Corp.
Inventor: Koustuban Ravi
CPC classification number: G01B9/02049 , G02B6/2935 , G02B2006/12159
Abstract: A Mach-Zehnder interferometer (MZI) filter comprising one or more passive compensation structures are described. The passive compensation structures yield MZI filters that are intrinsically tolerant to perturbations in waveguide dimensions and/or other ambient conditions. The use of n+1 waveguide widths can mitigate n different sources of perturbation to the filter. The use of at least three different waveguide widths for each Mach-Zehnder waveguide can alleviate sensitivity of filter performance to random width or temperature variations. A tolerance compensation portion is positioned between a first coupler section and a second coupler section, wherein the tolerance compensation portion includes a first compensation section having a second width, a second compensation section having a third width and a third compensation section having a fourth width, wherein the fourth width is greater than the third width and the third width is greater than the second width.
-
公开(公告)号:US20230168076A1
公开(公告)日:2023-06-01
申请号:US17538926
申请日:2021-11-30
Applicant: Psiquantum, Corp.
Inventor: Koustuban Ravi
CPC classification number: G01B9/02049 , G02B6/2935 , G02B2006/12159
Abstract: A Mach-Zehnder interferometer (MZI) filter comprising one or more passive compensation structures are described. The passive compensation structures yield MZI filters that are intrinsically tolerant to perturbations in waveguide dimensions and/or other ambient conditions. The use of n+1 waveguide widths can mitigate n different sources of perturbation to the filter. The use of at least three different waveguide widths for each Mach-Zehnder waveguide can alleviate sensitivity of filter performance to random width or temperature variations. A tolerance compensation portion is positioned between a first coupler section and a second coupler section, wherein the tolerance compensation portion includes a first compensation section having a second width, a second compensation section having a third width and a third compensation section having a fourth width, wherein the fourth width is greater than the third width and the third width is greater than the second width.
-
-
-
-
-
-
-
-
-