Abstract:
A method for extending data lifetime for reference in deduplication is provided. The method includes determining that a quantity of user data has at least a threshold amount of data that is re-created in a storage system. The method includes protecting at least portions of the quantity of user data from erasure by garbage collection in the storage system during a predetermined time interval, wherein the protected at least portions are available for data deduplication of further user data in the storage system during the predetermined time interval.
Abstract:
A storage cluster is provided. The storage cluster includes a plurality of storage nodes, each of the plurality of storage nodes having nonvolatile solid-state memory and a plurality of operations queues coupled to the solid-state memory. The plurality of storage nodes is configured to distribute the user data and metadata throughout the plurality of storage nodes such that the plurality of storage nodes can access the user data with a failure of two of the plurality of storage nodes. Each of the plurality of storage nodes is configured to determine whether a read of 1 or more bits in the solid-state memory via a first path is within a latency budget. The plurality of storage nodes is configured to perform a read of user data or metadata via a second path, responsive to a determination that the read of the bit via the first path is not within the latency budget.
Abstract:
A storage controller coupled to a storage array comprising one or more storage devices receives a request to write encrypted data to a volume resident on a storage array, where the encrypted data comprises data encrypted by a first encryption key that is associated with at least one property of the data. The storage controller determines a decryption key to decrypt the encrypted data, decrypts the encrypted data using the decryption key, performs at least one data reduction operation on the decrypted data, encrypts the reduced data using a second encryption key to generate a second encrypted data, and storing the second encrypted data on the storage array.
Abstract:
A storage controller coupled to a storage array comprising one or more storage devices receives a request to write encrypted data to a volume resident on a storage array, where the encrypted data comprises data encrypted by a first encryption key that is associated with at least one property of the data. The storage controller determines a decryption key to decrypt the encrypted data, decrypts the encrypted data using the decryption key, performs at least one data reduction operation on the decrypted data, encrypts the reduced data using a second encryption key to generate a second encrypted data, and storing the second encrypted data on the storage array.
Abstract:
A method of failure mapping is provided. The method includes distributing user data throughout a plurality of storage nodes through erasure coding, wherein the plurality of storage nodes are housed within a chassis that couples the storage nodes as a storage cluster. Each of the plurality of storage nodes has a non-volatile solid-state storage with flash memory or other types of non-volatile memory and the user data is accessible via the erasure coding from a remainder of the plurality of storage nodes in event of two of the plurality of storage nodes being unreachable. The method includes determining that a non-volatile memory block in the memory has a defect and generating a mask that indicates the non-volatile memory block and the defect. The method includes reading from the non-volatile memory block with application of the mask, wherein the reading and the application of the mask are performed by the non-volatile solid-state storage.
Abstract:
A plurality of storage nodes within a single chassis is provided. The plurality of storage nodes is configured to communicate together as a storage cluster. The plurality of storage nodes has a non-volatile solid-state storage for user data storage. The plurality of storage nodes is configured to distribute the user data and metadata associated with the user data throughout the plurality of storage nodes, with erasure coding of the user data. The plurality of storage nodes is configured to recover from failure of two of the plurality of storage nodes by applying the erasure coding to the user data from a remainder of the plurality of storage nodes. The plurality of storage nodes is configured to detect an error and engage in an error recovery via one of a processor of one of the plurality of storage nodes, a processor of the non-volatile solid state storage, or the flash memory.
Abstract:
A storage cluster is provided. The storage cluster includes a plurality of storage nodes within a chassis. The plurality of storage nodes has flash memory for storage of user data and is configured to distribute the user data and metadata throughout the plurality of storage nodes such that the storage nodes can access the user data with a failure of two of the plurality of storage nodes. Each of the storage nodes is configured to generate at least one address translation table that maps around defects in the flash memory on one of a per flash package basis, per flash die basis, per flash plane basis, per flash block basis, per flash page basis, or per physical address basis. Each of the plurality of storage nodes is configured to apply the at least one address translation table to write and read accesses of the user data.
Abstract:
A storage cluster is provided. The storage cluster includes a plurality of storage nodes within a chassis. The plurality of storage nodes has flash memory for storage of user data and is configured to distribute the user data and metadata throughout the plurality of storage nodes such that the storage nodes can access the user data with a failure of two of the plurality of storage nodes. Each of the storage nodes is configured to generate at least one address translation table that maps around defects in the flash memory on one of a per flash package basis, per flash die basis, per flash plane basis, per flash block basis, per flash page basis, or per physical address basis. Each of the plurality of storage nodes is configured to apply the at least one address translation table to write and read accesses of the user data.
Abstract:
In some embodiments, a method for die-level monitoring is provided. The method includes distributing user data throughout a plurality of storage nodes through erasure coding, wherein the plurality of storage nodes are housed within a chassis that couples the storage nodes. Each of the storage nodes has a non-volatile solid-state storage with non-volatile memory and the user data is accessible via the erasure coding from a remainder of the storage nodes in event of two of the storage nodes being unreachable. The method includes producing diagnostic information that diagnoses the non-volatile memory on a basis of per package, per die, per plane, per block, or per page, the producing performed by each of the plurality of storage nodes. The method includes writing the diagnostic information to a memory in the storage cluster.
Abstract:
A method for adjustable error correction in a storage cluster is provided. The method includes determining health of a non-volatile memory of a non-volatile solid-state storage unit of each of a plurality of storage nodes in a storage cluster on a basis of per flash package, per flash die, per flash plane, per flash block, or per flash page. The determining is performed by the storage cluster. The plurality of storage nodes is housed within a chassis that couples the storage nodes as the storage cluster. The method includes adjusting erasure coding across the plurality of storage nodes based on the health of the non-volatile memory and distributing user data throughout the plurality of storage nodes through the erasure coding. The user data is accessible via the erasure coding from a remainder of the plurality of storage nodes if any of the plurality of storage nodes are unreachable.