Abstract:
Dynamically forming a failure domain in a storage system that includes a plurality of blades, each blade mounted within one of a plurality of chassis, including: identifying, in dependence upon a failure domain formation policy, an available configuration for a failure domain that includes a first blade mounted within a first chassis and a second blade mounted within a second chassis, wherein each chassis is configured to support multiple types of blades; and creating the failure domain in accordance with the available configuration.
Abstract:
A plurality of storage nodes is provided. Each of the plurality of storage nodes includes nonvolatile solid-state memory for user data storage. The plurality of storage nodes is configured to distribute the user data and metadata associated with the user data throughout the plurality of storage nodes such that the plurality of storage nodes maintain the ability to read the user data, using erasure coding, despite a loss of two of the plurality of storage nodes. The plurality of storage nodes is configured to initiate an action based on the redundant copies of the metadata, responsive to achieving a level of redundancy for the redundant copies of the metadata. A method for accessing user data in a plurality of storage nodes having nonvolatile solid-state memory is also provided.
Abstract:
A plurality of storage nodes in a single chassis is provided. The plurality of storage nodes in the single chassis is configured to communicate together as a storage cluster. Each of the plurality of storage nodes includes nonvolatile solid-state memory for user data storage. The plurality of storage nodes is configured to distribute the user data and metadata associated with the user data throughout the plurality of storage nodes such that the plurality of storage nodes maintain the ability to read the user data, using erasure coding, despite a loss of two of the plurality of storage nodes. The plurality of storage nodes configured to initiate an action based on the redundant copies of the metadata, responsive to achieving a level of redundancy for the redundant copies of the metadata. A method for accessing user data in a plurality of storage nodes having nonvolatile solid-state memory is also provided.
Abstract:
A method of applying an address space to data storage in a non-volatile solid-state storage is provided. The method includes receiving a plurality of portions of user data for storage in the non-volatile solid-state storage and assigning to each successive one of the plurality of portions of user data one of a plurality of sequential, nonrepeating addresses of an address space. The address range of the address space exceeds a maximum number of addresses expected to be applied during a lifespan of the non-volatile solid-state storage. The method includes writing each of the plurality of portions of user data to the non-volatile solid-state storage such that each of the plurality of portions of user data is identified and locatable for reading via the one of the plurality of sequential, nonrepeating addresses of the address space.
Abstract:
A storage system that supports independent scaling of compute resources and storage resources, the storage system including: one or more chassis, wherein each chassis includes a plurality of slots, each slot configured to receive a blade; a plurality of compute resources; a plurality of storage resources; a plurality of blades, where each blade includes at least one compute resource or at least one storage resource and each of the storage resources may be directly accessed by each of the compute resources without utilizing an intermediate compute resource; a first power domain configured to deliver power to one or more of the compute resources; and a second power domain configured to deliver power to the storage resources, wherein the first power domain and the second power domain can be independently operated.
Abstract:
Dynamically forming a failure domain in a storage system that includes a plurality of blades, each blade mounted within one of a plurality of chassis, including: identifying, in dependence upon a failure domain formation policy, an available configuration for a failure domain that includes a first blade mounted within a first chassis and a second blade mounted within a second chassis, wherein each chassis is configured to support multiple types of blades; and creating the failure domain in accordance with the available configuration.
Abstract:
A method of applying an address space to data storage in a non-volatile solid-state storage is provided. The method includes receiving a plurality of portions of user data for storage in the non-volatile solid-state storage and assigning to each successive one of the plurality of portions of user data one of a plurality of sequential, nonrepeating addresses of an address space. The address range of the address space exceeds a maximum number of addresses expected to be applied during a lifespan of the non-volatile solid-state storage. The method includes writing each of the plurality of portions of user data to the non-volatile solid-state storage such that each of the plurality of portions of user data is identified and locatable for reading via the one of the plurality of sequential, nonrepeating addresses of the address space.
Abstract:
A method of applying an address space to data storage in a non-volatile solid-state storage is provided. The method includes receiving a plurality of portions of user data for storage in the non-volatile solid-state storage and assigning to each successive one of the plurality of portions of user data one of a plurality of sequential, nonrepeating addresses of an address space. The address range of the address space exceeds a maximum number of addresses expected to be applied during a lifespan of the non-volatile solid-state storage. The method includes writing each of the plurality of portions of user data to the non-volatile solid-state storage such that each of the plurality of portions of user data is identified and locatable for reading via the one of the plurality of sequential, nonrepeating addresses of the address space.
Abstract:
A plurality of storage nodes is provided. Each of the plurality of storage nodes includes nonvolatile solid-state memory for user data storage. The plurality of storage nodes is configured to distribute the user data and metadata associated with the user data throughout the plurality of storage nodes such that the plurality of storage nodes maintain the ability to read the user data, using erasure coding, despite a loss of two of the plurality of storage nodes. The plurality of storage nodes is configured to initiate an action based on the redundant copies of the metadata, responsive to achieving a level of redundancy for the redundant copies of the metadata. A method for accessing user data in a plurality of storage nodes having nonvolatile solid-state memory is also provided.
Abstract:
A method of applying an address space to data storage in a non-volatile solid-state storage is provided. The method includes receiving a plurality of portions of user data for storage in the non-volatile solid-state storage and assigning to each successive one of the plurality of portions of user data one of a plurality of sequential, nonrepeating addresses of an address space. The address range of the address space exceeds a maximum number of addresses expected to be applied during a lifespan of the non-volatile solid-state storage. The method includes writing each of the plurality of portions of user data to the non-volatile solid-state storage such that each of the plurality of portions of user data is identified and locatable for reading via the one of the plurality of sequential, nonrepeating addresses of the address space.