Optical sensor with dual-axis gimballed transmitter and staring detector

    公开(公告)号:US12270946B2

    公开(公告)日:2025-04-08

    申请号:US17474504

    申请日:2021-09-14

    Abstract: The design of an existing air-to-air missile seeker is adapted to new missions that require both active laser illumination and detection (passive or active) capabilities. The gimbal is used to point the laser beam to a desired location in a transmit FOR. This approach minimizes the size, weight and power of the sensor because only a small portion of the transmit FOR is illuminated at any instant. This minimizes the laser output required, which reduces the power to operate the laser and the power to maintain the laser at operating temperature. In existing seekers, the gimbal points the detector in the desired direction to expand its FOR. To address the limitations of coupling the laser beam into the gimbaled optical system, the gimbal cannot perform the steering function for the detector. Instead, a staring detector receives light through an off-gimbal aperture within a fixed receive FOR that overlaps the transmit FOR.

    Quick-mount laser warning receiver

    公开(公告)号:US12253627B2

    公开(公告)日:2025-03-18

    申请号:US17961185

    申请日:2022-10-06

    Inventor: Sean D. Keller

    Abstract: A laser warning receiver that can be detachably mounted on the inside of a window of a manned platform to detect laser threats within its field-of-view (FOV) and to provide visual or audio warnings to the human occupant. The LWR is fully self-contained and independent of any systems on the manned platform. In different packaging configurations, the receiver's FOV can be manually rotated to better visualize the threat and/or the receiver's human-machine interface (HMIF) can be manually rotated to better display the warnings. Although most typically used in manned aircraft the LWR can be used in other manned vehicles or ships.

    Optical true time delay (TTD) device using microelectrical-mechanical system (MEMS) micromirror arrays (MMAS) that exhibit tip/tilt/piston (TTP) actuation

    公开(公告)号:US11539131B2

    公开(公告)日:2022-12-27

    申请号:US17001125

    申请日:2020-08-24

    Abstract: An optical true time delay (TTD) control device for controllably alters the transit time of an optical beam traveling through the device by using the tip & tilt capability of MEMS MMAs to control the entrance and exit angles to a reflection cavity to coarsely control the path length and transit time and the piston capability to fine tune the path length and transit time. The reflection cavity can be configured in one, two or three dimensions with or without an optically transparent solid medium and using additional MEMS MMAs to provide controllable mirror surfaces within the cavity to enhance dynamic range and tenability. The input MEMS MMA may be “segmented” to re-direct a plurality of channel optical beams from the cavity at the same or different exit angles. The segments may be coated with different AR coatings to provide channel optical beams at different wavelengths.

    Directed energy (DE) weapon and passive millimeter wave (PmmW) imager for target tracking

    公开(公告)号:US11536543B2

    公开(公告)日:2022-12-27

    申请号:US16773257

    申请日:2020-01-27

    Abstract: A DE energy weapon and tracking system includes a passive millimeter wave (PmmW) imaging receiver on a common gimbaled telescope to sense natural electromagnetic radiation from a mmW scene. The PmmW imaging receiver operates in a portion of the electromagnetic spectrum distinct from the IR bands associated with thermal blooming or the HEL laser. In the case of a HPM source, the reflected energy is either in a different RF band and/or of diminished amplitude such as to not interfere with operation of the PmmW imaging receiver. Although lower resolution than traditional optical imaging, PmmW imaging provides a viable alternative for target tracking when the DE weapon is actively prosecuting the target and provides additional tracking information when the DE weapon is not engaged.

    Active imaging using a micro-electro-mechanical system (MEMS) micro-mirror array (MMA)

    公开(公告)号:US11477350B2

    公开(公告)日:2022-10-18

    申请号:US17150286

    申请日:2021-01-15

    Abstract: Imaging systems and method of optical imaging. One example of an imaging system includes an optical scanning subsystem including an optical source and a MEMS MMA, the MEMS MMA being configured to direct optical radiation generated by the optical source over an area of a scene, a detection subsystem including an optical sensor configured to collect reflected optical radiation from the area of the scene, and a fused fiber focusing assembly including a fused fiber bundle, a plurality of lenses coupled together and positioned to receive and focus the reflected optical radiation from the area of the scene directly onto the fused fiber bundle, a microlens array interposed between the fused fiber bundle and the optical sensor and positioned to receive the reflected optical radiation from the fused fiber bundle, and a focusing lens positioned to direct the reflected optical radiation from the microlens array onto the optical sensor. The MEMS MMA may be further configured to generate and independently steer multiple beams of optical radiation, at the same or different wavelengths, to more fully interrogate the area of the scene. The MEMS MMA through its Piston capability may be further configured to shape the optical beam(s) to execute a variety of optical functions within the beam steering device.

    MICRO-ELECTRO-MECHANICAL SYSTEM (MEMS) MICRO-MIRROR ARRAY (MMA) AND OFF-AXIS PARABOLA (OAP) STEERED ACTIVE SITUATIONAL AWARENESS SENSOR

    公开(公告)号:US20220260827A1

    公开(公告)日:2022-08-18

    申请号:US17177755

    申请日:2021-02-17

    Abstract: An active situational sensor uses a Micro-Electro-Mechanical System (MEMS) Micro-Mirror Array (MMA) to steer an optical beam to different off-axis sections of a parabolic mirror, an “OAP”, to re-direct and focus optical radiation into a spot-beam onto a conical shape of a fixed mirror, which redirects the spot-beam to scan a FOR. The sensor may rapidly scan a 360° horizontal FOR with a specified vertical FOR or any portion thereof, move discretely between multiple specific objects per frame, vary the dwell time on an object or compensate for other external factors to tailor the scan to a particular application or changing conditions in real-time. The MEMS MMA may be configurable to shape the spot-beam to adjust size, focus or intensity profile or to produce deviations in the wavefront of the spot-beam to compensate for path length differences or atmospheric distortion. The MEMS MMA being configurable to produce and independently steer a plurality of spot-beams of the same or different wavelengths.

    ACTIVE IMAGING USING A MICRO-ELECTRO-MECHANICAL SYSTEM (MEMS) MICRO-MIRROR ARRAY (MMA)

    公开(公告)号:US20220232144A1

    公开(公告)日:2022-07-21

    申请号:US17150286

    申请日:2021-01-15

    Abstract: Imaging systems and method of optical imaging. One example of an imaging system includes an optical scanning subsystem including an optical source and a MEMS MMA, the MEMS MMA being configured to direct optical radiation generated by the optical source over an area of a scene, a detection subsystem including an optical sensor configured to collect reflected optical radiation from the area of the scene, and a fused fiber focusing assembly including a fused fiber bundle, a plurality of lenses coupled together and positioned to receive and focus the reflected optical radiation from the area of the scene directly onto the fused fiber bundle, a microlens array interposed between the fused fiber bundle and the optical sensor and positioned to receive the reflected optical radiation from the fused fiber bundle, and a focusing lens positioned to direct the reflected optical radiation from the microlens array onto the optical sensor. The MEMS MMA may be further configured to generate and independently steer multiple beams of optical radiation, at the same or different wavelengths, to more fully interrogate the area of the scene. The MEMS MMA through its Piston capability may be further configured to shape the optical beam(s) to execute a variety of optical functions within the beam steering device.

Patent Agency Ranking