Abstract:
A cryogenic cooler includes a housing, and first, second, and third actuators. The first actuator includes at least one first voice coil and at least one first magnetic circuit, the at least one first voice coil of the first actuator configured to drive a compressor piston, the first actuator causing vibrations to the housing when driving the compressor piston. The second actuator includes at least one second voice coil and at least one second magnetic circuit, the at least one second voice coil of the second actuator configured to reduce the vibrations to the housing caused by driving the compressor piston. The third actuator includes at least one third voice coil and at least one third magnetic circuit, the third actuator configured to drive a displacer piston. The compressor piston, balance mechanism, and displacer piston are concentrically formed within the cryogenic cooler.
Abstract:
A pulse-tube cryocooler includes a compressor piston that is axially aligned with a pulse tube. The compressor piston is an annular piston that has a central hole around its axis. An inertance tube, connected to one end of the pulse tube, runs through the central hole in the compressor piston. The cryocooler also includes a balancer that moves in opposition to the compressor piston, to offset the forces in moving the compressor piston. The balancer may also be axially aligned with the pulse tube, the annular piston, and the inertance tube. The alignment of the compressor piston, the pulse tube, and the inertance tube aligns the forces produced by movement of fluid within the cryocooler.
Abstract:
A system includes a device, a support structure, and a flexure bearing configured to connect the device to the support structure. The flexure bearing includes an outer hub and an inner hub, where the hubs are configured to be secured to the support structure and to the device. The flexure bearing also includes multiple sets of flexure arms connecting the outer hub and the inner hub, where each set of flexure arms includes symmetric flexure arms. The flexure bearing further includes multiple bridges, where each bridge connects one of the flexure arms in one set of flexure arms to one of the flexure arms in an adjacent set of flexure arms.
Abstract:
Components within a cryocooler are scaled and/or configured for operation at a CMG operating frequency (e.g., 100 Hz) rather than at 30 to 70 Hz, matching the exported disturbances of control moment gyroscopes on the same platform and reducing line-of-sight jitter for electro-optic infrared focal plane array sensors. The smaller piston working volume and other reduced component sizes allow the cryocooler to be smaller and lighter than designs operating at lower frequencies. Combined with an advanced regenerator suitable for the higher frequency operation, the cryocooler has improved cooling efficiency over such lower frequency designs.
Abstract:
A linear spring member having an annular region with a first thickness connected in series by cylindrical regions having a second thickness, wherein the first thickness is less than the second thickness. Outer portions of adjacent annular regions are coupled together by a first cylindrical region and inner portions of adjacent annular regions are coupled together by a second cylindrical region such that the effective spring rate of the bi-directional spring device increases symmetrically as it is displaced in either compression or tension.
Abstract:
A pulse-tube cryocooler includes a compressor piston that is axially aligned with a pulse tube. The compressor piston is an annular piston that has a central hole around its axis. An inertance tube, connected to one end of the pulse tube, runs through the central hole in the compressor piston. The cryocooler also includes a balancer that moves in opposition to the compressor piston, to offset the forces in moving the compressor piston. The balancer may also be axially aligned with the pulse tube, the annular piston, and the inertance tube. The alignment of the compressor piston, the pulse tube, and the inertance tube aligns the forces produced by movement of fluid within the cryocooler. This makes it easier to cancel mechanical forces produced by the cryocooler in operation, since all (or most) of the forces are in a single axial direction.
Abstract:
A linear spring member having an annular region with a first thickness connected in series by cylindrical regions having a second thickness, wherein the first thickness is less than the second thickness. Outer portions of adjacent annular regions are coupled together by a first cylindrical region and inner portions of adjacent annular regions are coupled together by a second cylindrical region such that the effective spring rate of the bi-directional spring device increases symmetrically as it is displaced in either compression or tension.
Abstract:
A linear spring member having an annular region with a first thickness connected in series by cylindrical regions having a second thickness, wherein the first thickness is less than the second thickness. Outer portions of adjacent annular regions are coupled together by a first cylindrical region and inner portions of adjacent annular regions are coupled together by a second cylindrical region such that the effective spring rate of the bi-directional spring device increases symmetrically as it is displaced in either compression or tension.
Abstract:
A linear spring member having an annular region with a first thickness connected in series by cylindrical regions having a second thickness, wherein the first thickness is less than the second thickness. Outer portions of adjacent annular regions are coupled together by a first cylindrical region and inner portions of adjacent annular regions are coupled together by a second cylindrical region such that the effective spring rate of the bi-directional spring device increases symmetrically as it is displaced in either compression or tension.
Abstract:
A cryogenic cooler includes a housing, and first, second, and third actuators. The first actuator includes at least one first voice coil and at least one first magnetic circuit, the at least one first voice coil of the first actuator configured to drive a compressor piston, the first actuator causing vibrations to the housing when driving the compressor piston. The second actuator includes at least one second voice coil and at least one second magnetic circuit, the at least one second voice coil of the second actuator configured to reduce the vibrations to the housing caused by driving the compressor piston. The third actuator includes at least one third voice coil and at least one third magnetic circuit, the third actuator configured to drive a displacer piston. The compressor piston, balance mechanism, and displacer piston are concentrically formed within the cryogenic cooler.