Abstract:
An apparatus selectively attaches a physiologic sensor pod to an article of apparel or clothing, wherein the sensor pod includes a housing having a top surface, a bottom surface, a peripheral surface, and a groove extending around the peripheral surface. In an embodiment, the apparatus comprises an elastic ring having an inner circumference slightly smaller than an outer circumference of the groove in the outer circumference of the sensor pod. The apparatus can also include a slit extending from an outer circumference of the elastic ring toward, but not all the way to, the inner circumference of ring, wherein a portion of fabric is insertable into the slit, at which point, a peripheral portion of the elastic ring can be sewn or otherwise attached to the fabric. In another embodiment, the adaptor includes a support ring adapted to be sewn to the elastic ring with a portion of fabric therebetween.
Abstract:
A user-wearable devices includes an on-body detector that uses one or more sensors of the device to detect whether or not the user-wearable device is being worn by a user. When the user-wearable device is detected as being worn by a user it is operated in a first mode, and when the user-wearable device is detected as not being worn by a user it is operated in a second mode that consumes less power than the first mode. Operating the user-wearable device in the first mode can include enabling wireless communication between the user-wearable device and a base station. Operating the user-wearable device in the second mode can include disabling wireless communication between the user-wearable device and a base station. Operating the user-wearable device in the second mode can also include disabling sensors of the user-wearable device and/or placing sensors of the user-wearable device in a low power mode.
Abstract:
An activity monitor determines whether the current value of a user's heart rate from a heart rate sensor is correct based on a motion-based heart rate and an associated spread which are determined by a model. The model provides a probability density function (PDF) of the heart rate based on confidence levels of previous heart rate values. The spread of the PDF is inversely proportional to the confidence levels. The confidence level may be based on an amplitude of a spectral peak relative to a noise floor. Multiple spectral peaks within the spread can be processed based on a shape of the PDF to determine which peak to use as the current value from the heart rate sensor. Either the value from the heart rate sensor or the motion-based heart rate is provided as the current heart rate.
Abstract:
A physiologic sensor pod comprises a housing, and first and second electrodes on a bottom surface of the housing and spaced apart from one another. Within the housing is a battery, a battery charging circuit, an electrocardiogram (ECG) sensor circuit powered by the battery and adapted to sense an ECG signal, and a reset detection circuit. The battery charging circuit is adapted to charge the battery when the first and second electrodes of the physiologic sensor pod are placed in contact with first and second electrical contacts of a charging unit. The ECG sensor circuit is adapted to obtain an ECG signal while the first and second electrodes are placed against a user's chest. The reset detection circuit is adapted to output a reset signal, which causes the physiologic sensor pod to be reset, when a voltage between the first and second electrodes is greater than a reset threshold level.
Abstract:
An apparatus selectively attaches a physiologic sensor pod to an article of apparel or clothing, wherein the sensor pod includes a housing having a top surface, a bottom surface, a peripheral surface, and a groove extending around the peripheral surface. In an embodiment, the apparatus comprises an elastic ring having an inner circumference slightly smaller than an outer circumference of the groove in the outer circumference of the sensor pod. The apparatus can also include a slit extending from an outer circumference of the elastic ring toward, but not all the way to, the inner circumference of ring, wherein a portion of fabric is insertable into the slit, at which point, a peripheral portion of the elastic ring can be sewn or otherwise attached to the fabric. In another embodiment, the adaptor includes a support ring adapted to be sewn to the elastic ring with a portion of fabric therebetween.
Abstract:
A physiologic sensor pod comprises a housing, and first and second electrodes on a bottom surface of the housing and spaced apart from one another. Within the housing is a battery, a battery charging circuit, an electrocardiogram (ECG) sensor circuit powered by the battery and adapted to sense an ECG signal, and a reset detection circuit. The battery charging circuit is adapted to charge the battery when the first and second electrodes of the physiologic sensor pod are placed in contact with first and second electrical contacts of a charging unit. The ECG sensor circuit is adapted to obtain an ECG signal while the first and second electrodes are placed against a user's chest. The reset detection circuit is adapted to output a reset signal, which causes the physiologic sensor pod to be reset, when a voltage between the first and second electrodes is greater than a reset threshold level.
Abstract:
Described herein are user-wearable devices that include an optical sensor, and methods for use therewith. In certain embodiments, an optical sensor of a user-wearable device (e.g., a wrist-worn device) is used to detect blue light that is incident on the optical sensor and to produce a blue light detection signal indicative thereof, and thus, indicative of the response of the user's intrinsically photosensitive Retinal Ganglion Cells (ipRGCs). In dependence on the blue light detection signal, there is a determination of a metric indicative of an amount of blue light detected by the optical sensor. The metric is compared to a corresponding threshold, and a user notification is triggered in dependence on results of the comparing, wherein the user notification informs a person wearing the user-wearable device to adjust their exposure to light.
Abstract:
A user-wearable device includes a housing and a band that straps the housing to a portion of a user's body (e.g., wrist). One or more skin contact sensors in and/or on the housing can sense biometric information of a user wearing the device. An authentication module performs or receives results of an authentication determination that compares the sensed biometric information to baseline biometric information to determine whether they match. An on-body detector uses one or more of the sensors to determine whether the device is being worn by a user. After a user is authenticated based on a match between the sensed and baseline biometric information, the authentication module continually concludes that the user is authenticated for at least a period of time, without an additional comparison between sensed and baseline biometric information, if the on-body detector detects that the user-wearable device is still being worn by the user.
Abstract:
Technology is described for a wearable sensor system including an accelerometer and a PPG optical sensor having light processing elements including at least one photodetector in at least one linear configuration sharing an axis of orientation with the accelerometer. Heart rate measurements determined from reflected light detected by a photodetector of the light processing elements in a linear configuration are co-sampled with accelerometer measurements for one of its axes sharing its orientation with the linear configuration, thus providing per axis measurements which provide more precise data points for more easily compensating for motion artifacts in heart rate data. A wrist wearable biometric monitoring device is also described which embodies the wearable sensor system and performs active motion artifact compensation.