Abstract:
Systems and methods are provided for analyzing unstructured time stamped data. A distribution of time-stamped data is analyzed to identify a plurality of potential time series data hierarchies for structuring the data. An analysis of a potential time series data hierarchy may be performed. The analysis of the potential time series data hierarchies may include determining an optimal time series frequency and a data sufficiency metric for each of the potential time series data hierarchies. One of the potential time series data hierarchies may be selected based on a comparison of the data sufficiency metrics. Multiple time series may be derived in a single-read pass according to the selected time series data hierarchy. A time series forecast corresponding to at least one of the derived time series may be generated.
Abstract:
A pipeline system for time-series data forecasting using a distributed computing environment is disclosed herein. In one example, a pipeline for forecasting time series is generated. The pipeline represents a sequence of operations for processing the time series to produce forecasts. The sequence of operations include model strategy operations for applying various model strategies to the time series to determine error distributions corresponding to the model strategies. The sequence of operations further include a model-strategy comparison operation for determining which of the model strategies is a champion model strategy for the plurality of time series based on the error distributions of the model strategies. The pipeline is executed to determine the champion model strategy for the time series.
Abstract:
Systems and methods are provided for analyzing unstructured time stamped data. A distribution of time-stamped data is analyzed to identify a plurality of potential time series data hierarchies for structuring the data. An analysis of a potential time series data hierarchy may be performed. The analysis of the potential time series data hierarchies may include determining an optimal time series frequency and a data sufficiency metric for each of the potential time series data hierarchies. One of the potential time series data hierarchies may be selected based on a comparison of the data sufficiency metrics. Multiple time series may be derived in a single-read pass according to the selected time series data hierarchy. A time series forecast corresponding to at least one of the derived time series may be generated.
Abstract:
Some examples can involve a system that can receive a first user selection of time series data and a second user selection of a type of forecasting model to apply to the time series data. The system can then obtain a first set of candidate values and a second set of candidate values for a first parameter and a second parameter, respectively, of the selected type of forecasting model. The candidate values may be determined based on statistical information derived from the time series data. The system can then provide the first set of candidate values and the second set of candidate values to the user, receive user selections of a first parameter value and a second parameter value, and determine whether a conflict exists between the first parameter value and the second parameter value. If so, the system can generate an output indicating that the conflict exists.
Abstract:
Some examples can involve a system that can receive a first user selection of time series data and a second user selection of a type of forecasting model to apply to the time series data. The system can then obtain a first set of candidate values and a second set of candidate values for a first parameter and a second parameter, respectively, of the selected type of forecasting model. The candidate values may be determined based on statistical information derived from the time series data. The system can then provide the first set of candidate values and the second set of candidate values to the user, receive user selections of a first parameter value and a second parameter value, and determine whether a conflict exists between the first parameter value and the second parameter value. If so, the system can generate an output indicating that the conflict exists.
Abstract:
Systems and methods are provided for analyzing unstructured time stamped data. A distribution of time-stamped data is analyzed to identify a plurality of potential time series data hierarchies for structuring the data. An analysis of a potential time series data hierarchy may be performed. The analysis of the potential time series data hierarchies may include determining an optimal time series frequency and a data sufficiency metric for each of the potential time series data hierarchies. One of the potential time series data hierarchies may be selected based on a comparison of the data sufficiency metrics. Multiple time series may be derived in a single-read pass according to the selected time series data hierarchy. A time series forecast corresponding to at least one of the derived time series may be generated.
Abstract:
A pipeline system for time-series data forecasting using a distributed computing environment is disclosed herein. In one example, a pipeline for forecasting time series is generated. The pipeline represents a sequence of operations for processing the time series to produce forecasts. The sequence of operations include model strategy operations for applying various model strategies to the time series to determine error distributions corresponding to the model strategies. The sequence of operations further include a model-strategy comparison operation for determining which of the model strategies is a champion model strategy for the plurality of time series based on the error distributions of the model strategies. The pipeline is executed to determine the champion model strategy for the time series.
Abstract:
Systems and methods are provided for analyzing unstructured time stamped data. A distribution of time-stamped data is analyzed to identify a plurality of potential time series data hierarchies for structuring the data. An analysis of a potential time series data hierarchy may be performed. The analysis of the potential time series data hierarchies may include determining an optimal time series frequency and a data sufficiency metric for each of the potential time series data hierarchies. One of the potential time series data hierarchies may be selected based on a comparison of the data sufficiency metrics. Multiple time series may be derived in a single-read pass according to the selected time series data hierarchy. A time series forecast corresponding to at least one of the derived time series may be generated.
Abstract:
Systems and methods are provided for analyzing unstructured time stamped data. A distribution of time-stamped data is analyzed to identify a plurality of potential time series data hierarchies for structuring the data. An analysis of a potential time series data hierarchy may be performed. The analysis of the potential time series data hierarchies may include determining an optimal time series frequency and a data sufficiency metric for each of the potential time series data hierarchies. One of the potential time series data hierarchies may be selected based on a comparison of the data sufficiency metrics. Multiple time series may be derived in a single-read pass according to the selected time series data hierarchy. A time series forecast corresponding to at least one of the derived time series may be generated.
Abstract:
Systems and methods are provided for analyzing unstructured time stamped data. A distribution of time-stamped data is analyzed to identify a plurality of potential time series data hierarchies for structuring the data. An analysis of a potential time series data hierarchy may be performed. The analysis of the potential time series data hierarchies may include determining an optimal time series frequency and a data sufficiency metric for each of the potential time series data hierarchies. One of the potential time series data hierarchies may be selected based on a comparison of the data sufficiency metrics. Multiple time series may be derived in a single-read pass according to the selected time series data hierarchy. A time series forecast corresponding to at least one of the derived time series may be generated.