Abstract:
A process for preparing a catalyst component, including: contacting a compound R9zMgX2-z wherein R9 is aromatic, aliphatic or cyclo-aliphatic group containing up to 20 carbon atoms, X is a halide, and z is larger than 0 and smaller than 2, with an alkoxy- or aryloxy-containing silane compound to give a first intermediate reaction product; contacting the first intermediate reaction product with at least one activating compound selected electron donors, compounds of formula M(OR10)v-w(OR11)w, wherein M is Ti, Zr, Hf, Al or Si, and M(OR10)v-w(R11)w wherein M is Si, each R10 and R11, independently, represent an alkyl, alkenyl or aryl group, v is the valency of M, v is 3 or 4, and w is less than v, to give a second intermediate reaction product; and contacting the second intermediate reaction product with a halogen-containing Ti-compound, a monoester as activating agent, and a 1,3-diether as an internal electron donor.
Abstract:
The present invention relates to a catalyst component for polymerization of an olefin comprising a compound represented by the Fischer projection of: wherein R5 is substituted or unsubstituted hydrocarbyl having 1 to 20 carbon atoms; R6 and R7 are different and independently selected from the group consisting of hydrogen, halogen and substituted or unsubstituted hydrocarbyl having 1 to 20 carbon atoms; R5-R7 optionally containing one or more hetero-atoms replacing one or more carbon atoms, one or more hydrogen atom or both, wherein said hetero-atom is selected from the group consisting of nitrogen, oxygen, sulfur, silicon, phosphorus and halogen; and wherein the compound of Formula (I) is the only internal electron donor in the catalyst component. The present invention also relates to a process for preparing a polymerization catalyst component comprising the steps of i) contacting a compound R4zMgX2-z wherein R4 is aromatic, aliphatic or cyclo-aliphatic group containing 1 to 20 carbon atoms, X is a halide, and z is in a range of larger than 0 and smaller than 2, with an alkoxy- or aryloxy-containing silane compound to give a first intermediate reaction product; ii) contacting the first intermediate reaction product with at least one activating compound selected from the group formed by internal electron donors and compounds of formula M(OR2)v-w(R3)w, wherein M can be Ti, Zr, Hf, Al or Si, each R2 and R3, independently, represent an alkyl, alkenyl or aryl group, v is the valency of M and w is smaller than v and iii) contacting the second intermediate reaction product with a halogen-containing Ti-compound and an internal electron donor represented by the Fischer projection of formula (I); and optionally with at least one compound selected from a group comprising a monoester, a diester and a 1,3-diether.
Abstract:
The present invention relates to a catalyst composition comprising the compound represented by the Fischer projection of formula (I) as an internal electron donor, (I) wherein: R1, R2, R3, R4, R5 and R6 are the same or different and are independently selected from a group consisting of hydrogen, straight, branched and cyclic alkyl and aromatic substituted and unsubstituted hydrocarbyl having 1 to 20 carbon atoms; R7 is selected from a group consisting of straight, branched and cyclic alkyl and aromatic substituted and unsubstituted hydrocarbyl having 1 to 20 carbon atoms; and R8 is selected from a group consisting of aromatic substituted and unsubstituted hydrocarbyl having 6 to 20 carbon atoms; N is nitrogen atom; O is oxygen atom; and C is carbon atom. The present invention also relates to a process for preparing said polymerization catalyst composition and to a polymerization catalyst system comprising said catalyst composition, a cocatalyst and optionally an external electron donor. Furthermore, the present invention relates to a polyolefin obtainable by the process according to the present invention and to the use of the compound of formula (I) as in internal electron donor in catalysts for polymerization of olefins.
Abstract:
A process for the preparation of a procatalyst suitable for preparing a catalyst composition for olefin polymerization, the procatalyst obtained or obtainable by the process; and a catalyst composition for olefin polymerization comprising the procatalyst. In particular a benzamide can be used as an activator in the preparation of a supported Ziegler-Natta type procatalyst useful for a process for the preparation of polyolefins. The Polyolefins and polypropylene homopolymers are also disclosed.
Abstract:
A catalyst composition including the compound of Formula I as an internal electron donor, wherein: R1, R2, R3, R4, R5 and R6 are independently selected from a group consisting of hydrogen, straight, branched and cyclic alkyl and aromatic substituted and unsubstituted hydrocarbyl having 1 to 20 carbon atoms; R7 is selected from a group consisting of straight, branched and cyclic alkyl and aromatic substituted and unsubstituted hydrocarbyl having 1 to 20 carbon atoms; and R8 is selected from a group consisting of aromatic substituted and unsubstituted hydrocarbyl having 6 to 20 carbon atoms. Also disclosed is a process for preparing said polymerization catalyst composition; a polymerization catalyst system comprising said catalyst composition, a co-catalyst and optionally an external electron donor; a polyolefin obtainable by the process; and use of the compound of Formula I as in internal electron donor in catalysts for polymerization of olefins.
Abstract:
A process for the preparation of a procatalyst suitable for preparing a catalyst composition for olefin polymerization, the procatalyst obtained or obtainable by the process; and a catalyst composition for olefin polymerization comprising the procatalyst. In particular a benzamide can be used as an activator in the preparation of a supported Ziegler-Natta type procatalyst useful for a process for the preparation of polyolefins. The Polyolefins and polypropylene homopolymers are also disclosed.
Abstract:
The present invention relates to a catalyst component for polymerization of an olefin comprising a compound represented by the Fischer projection of: wherein R5 is substituted or unsubstituted hydrocarbyl having 1 to 20 carbon atoms; R6 and R7 are different and independently selected from the group consisting of hydrogen, halogen and substituted or unsubstituted hydrocarbyl having 1 to 20 carbon atoms; R5-R7 optionally containing one or more hetero-atoms replacing one or more carbon atoms, one or more hydrogen atom or both, wherein said hetero-atom is selected from the group consisting of nitrogen, oxygen, sulfur, silicon, phosphorus and halogen; and wherein the compound of Formula (I) is the only internal electron donor in the catalyst component. The present invention also relates to a process for preparing a polymerization catalyst component comprising the steps of i) contacting a compound R4zMgX2-z wherein R4 is aromatic, aliphatic or cyclo-aliphatic group containing 1 to 20 carbon atoms, X is a halide, and z is in a range of larger than 0 and smaller than 2, with an alkoxy- or aryloxy-containing silane compound to give a first intermediate reaction product; ii) contacting the first intermediate reaction product with at least one activating compound selected from the group formed by internal electron donors and compounds of formula M(OR2)v-w(R3)w, wherein M can be Ti, Zr, Hf, Al or Si, each R2 and R3, independently, represent an alkyl, alkenyl or aryl group, v is the valency of M and w is smaller than v and iii) contacting the second intermediate reaction product with a halogen-containing Ti-compound and an internal electron donor represented by the Fischer projection of formula (I); and optionally with at least one compound selected from a group comprising a monoester, a diester and a 1,3-diether.
Abstract:
The invention relates to a process for the preparation of a procatalyst suitable for preparing a catalyst composition for olefin polymerization. The invention also relates to a procatalyst obtained or obtainable by the process. The invention further relates to the use of a benzamide as an activator in the preparation of a Ziegler-Natta procatalyst. The invention also relates to a process for the preparation of polyolefins. The invention also relates to a polyolefin. The invention further relates to a shaped article.
Abstract:
A catalyst composition comprising a monoester, the compound represented by formula (I) as an internal electron donor, and optionally an additional internal electron donor selected from a group consisting of diesters and diethers, wherein: R1, R2, R3, R4, R5 and R6 are hydrogen, straight, branched and cyclic alkyl having at most 20 carbon atoms and aromatic substituted and unsubstituted hydrocarbyl having 6 to 20 carbon atoms, R7 is a straight, branched and cyclic alkyl having at most 20 carbon atoms and aromatic substituted and unsubstituted hydrocarbyl having 6 to 20 carbon atoms, and R8 is an aromatic substituted and unsubstituted hydrocarbyl having 6 to 20 carbon atoms. Also described is a process for preparing the polymerization catalyst composition, a polymerization catalyst system comprising the catalyst composition, a co-catalyst and optionally an external electron donor; and use of the catalyst system for polymerization of olefins.
Abstract:
The present invention relates to a catalyst composition comprising the compound represented by the Fischer projection of formula (I) as an internal electron donor, (I) wherein: R1, R2, R3, R4, R5 and R6 are the same or different and are independently selected from a group consisting of hydrogen, straight, branched and cyclic alkyl and aromatic substituted and unsubstituted hydrocarbyl having 1 to 20 carbon atoms; R7 is selected from a group consisting of straight, branched and cyclic alkyl and aromatic substituted and unsubstituted hydrocarbyl having 1 to 20 carbon atoms; and R8 is selected from a group consisting of aromatic substituted and unsubstituted hydrocarbyl having 6 to 20 carbon atoms; N is nitrogen atom; O is oxygen atom; and C is carbon atom. The present invention also relates to a process for preparing said polymerization catalyst composition and to a polymerization catalyst system comprising said catalyst composition, a cocatalyst and optionally an external electron donor. Furthermore, the present invention relates to a polyolefin obtainable by the process according to the present invention and to the use of the compound of formula (I) as in internal electron donor in catalysts for polymerization of olefins.