Abstract:
Digesting cellulosic biomass solids in the presence of a well-distributed slurry catalyst capable of activating molecular hydrogen may limit the amount of degradation products that form during digestion. Methods for digesting cellulosic biomass solids can comprise: providing cellulosic biomass solids and a slurry catalyst in a hydrothermal digestion unit, the slurry catalyst being capable of activating molecular hydrogen; distributing the slurry catalyst within the cellulosic biomass solids using upwardly directed fluid flow in the hydrothermal digestion unit; heating the cellulosic biomass solids in the hydrothermal digestion unit in the presence of the slurry catalyst, a digestion solvent, and molecular hydrogen, thereby forming a liquor phase comprising soluble carbohydrates; and performing a first catalytic reduction reaction on the soluble carbohydrates within the hydrothermal digestion unit, thereby at least partially forming a reaction product comprising a triol, a diol, a monohydric alcohol, or any combination thereof in the hydrothermal digestion unit.
Abstract:
Separation of a product of digestion of cellulosic biomass solids may be challenging due to the various components contained therein. Methods and systems for processing cellulosic biomass, particularly a reaction product of a hydrothermal reaction containing lignin-derived products, such as phenolics, comprise providing the reaction product to a separation zone comprising a liquid-liquid extraction unit. The liquid-liquid extraction unit can provide an aqueous portion and a non-aqueous portion, where these portions can be separated into various fractions individually. For example, desirable compounds in the aqueous portion and non-aqueous portion can be recovered from the portions individually and optionally combined to be further processed into a fuels product. Heavier components in the aqueous portion and non-aqueous portion can be recovered from the portions individually and used in the process, such as phenolics that can be used as a digestion solvent.
Abstract:
A method of hydrothermal hydrocatalytic treating biomass is provided. Lignocellulosic biomass solids is provided to a hydrothermal digestion unit in the presence of a digestive solvent, and a supported hydrogenolysis catalyst containing (a) sulfur, (b) Mo or W, and (c) Co, Ni or mixture thereof, incorporated into a group 4 metal oxide support; (ii) heating the lignocellulosic biomass solids and digestive solvent in the presence of hydrogen, and the supported hydrogenolysis catalyst thereby forming a product solution containing plurality of oxygenated hydrocarbons, said catalyst retaining a crush strength of at least 50% after being subjected to an aqueous phase stability test compared with before the aqueous phase stability test or a crush strength of at least 0.25 kg after being subjected to an aqueous phase stability test.
Abstract:
Digestion of cellulosic biomass solids may be complicated by release of lignin therefrom. Methods for digesting cellulosic biomass solids may comprise: providing cellulosic biomass solids in a digestion solvent; at least partially converting the cellulosic biomass solids into a phenolics liquid phase comprising lignin, an aqueous phase comprising an alcoholic component derived from the cellulosic biomass solids, and an optional light organics phase; and separating the phenolics liquid phase from the aqueous phase.
Abstract:
Separation of a product of digestion of cellulosic biomass solids may be challenging due to the various components contained therein. Methods and systems for processing cellulosic biomass, particularly a reaction product of a hydrothermal reaction containing lignin-derived products, such as phenolics, comprise providing the reaction product to a separation zone comprising a liquid-liquid extraction unit. The liquid-liquid extraction unit can provide an aqueous portion and a non-aqueous portion, where these portions can be separated into various fractions individually. For example, desirable compounds in the aqueous portion and non-aqueous portion can be recovered from the portions individually and optionally combined to be further processed into a fuels product. Heavier components in the aqueous portion and non-aqueous portion can be recovered from the portions individually and used in the process, such as phenolics that can be used as a digestion solvent.
Abstract:
Digestion of cellulosic biomass solids may be complicated by release of lignin therefrom. Methods for digesting cellulosic biomass solids may comprise: providing cellulosic biomass solids in a digestion solvent; at least partially converting the cellulosic biomass solids into a phenolics liquid phase comprising lignin, an aqueous phase comprising an alcoholic component derived from the cellulosic biomass solids, and an optional light organics phase; combining at least the phenolics liquid phase and the aqueous phase with one another, thereby forming a combined phase; and separating at least a portion of the alcoholic component from at least a portion of the combined phase.
Abstract:
Digestion of cellulosic biomass solids may be complicated by release of lignin therefrom. Methods for digesting cellulosic biomass solids may comprise: heating cellulosic biomass solids and a digestion solvent in the presence of molecular hydrogen and a slurry catalyst capable of activating molecular hydrogen, thereby forming a phenolics liquid phase comprising lignin, an aqueous phase comprising an alcoholic component derived from the cellulosic biomass solids, and an optional light organics phase, the slurry catalyst being distributed in the cellulosic biomass solids and at least a portion of the slurry catalyst accumulating in the phenolics liquid phase as it forms; conveying at least a portion of the phenolics liquid phase and the slurry catalyst to a location above at least a portion of the cellulosic biomass solids; and after conveying the phenolics liquid phase and the slurry catalyst, releasing them such that they come in contact with the cellulosic biomass solids.
Abstract:
Digestion of cellulosic biomass solids can be enhanced in the presence of a phenolic solvent. Methods for digesting cellulosic biomass solids can comprise providing cellulosic biomass solids containing up to about 50% water by mass in a digestion medium comprising about 50% or more of an organic solvent by volume; heating the cellulosic biomass solids and the digestion medium in a digestion unit in the presence of molecular hydrogen and a slurry catalyst capable of activating molecular hydrogen, thereby forming an alcoholic component derived from the cellulosic biomass solids and liberating lignin therefrom; wherein the digestion medium and the water form a biphasic mixture in which the alcoholic component, slurry catalyst, and lignin are contained; removing at least a portion of the biphasic mixture from the digestion unit; converting at least a portion of the lignin into a phenolic solvent; and returning the phenolic solvent to the digestion unit.
Abstract:
Digestion of cellulosic biomass solids may be complicated by lignin release therefrom, which can produce a highly viscous phenolics liquid phase comprising lignin polymer. Methods for digesting cellulosic biomass solids may comprise: providing cellulosic biomass solids in the presence of a digestion solvent, molecular hydrogen, and a slurry catalyst capable of activating molecular hydrogen; at least partially converting the cellulosic biomass solids into a phenolics liquid phase comprising lignin, an aqueous phase comprising an alcoholic component derived from the cellulosic biomass solids, and an optional light organics phase; wherein at least a portion of the slurry catalyst accumulates in the phenolics liquid phase as it forms; and reducing the viscosity of the phenolics liquid phase.
Abstract:
Digesting cellulosic biomass in the presence of a slurry catalyst may reduce degradation product formation, but catalyst distribution and retention can be problematic. Digestion methods can comprise: providing cellulosic biomass solids and a slurry catalyst capable of activating molecular hydrogen in a digestion unit; providing a digestible filter aid in the digestion unit; distributing the slurry catalyst within the cellulosic biomass solids using fluid flow; retaining at least a portion of the slurry catalyst in a fixed location using the digestible filter aid; heating the cellulosic biomass solids in the presence of the slurry catalyst, a digestion solvent, and molecular hydrogen, thereby forming a liquor phase comprising soluble carbohydrates; and performing a catalytic reduction reaction on the soluble carbohydrates within the digestion unit, thereby at least partially forming a reaction product comprising a triol, a diol, a monohydric alcohol, or any combination thereof in the digestion unit.