Abstract:
Disclosed are a flexible screen extension structure, a flexible screen assembly, and a terminal. The flexible screen extension structure may include a first panel, a first sliding element, a second panel, a second sliding element, and a first elastic element. The first panel may include a first guiding mechanism. The first sliding element is slidably connected to the first guiding mechanism along a first direction. The second panel may include a second guiding mechanism. The second sliding element is slidably connected to the second guiding mechanism along a second direction. The second direction is parallel to the first direction. The first elastic element is arranged between the first sliding element and the second sliding element.
Abstract:
The present disclosure relates to a head-mounted electronic device. The head-mounted electronic device includes: a U-shaped head-mounted headphone; a U-shaped display component rotatably connected to the headphone; a sensor component disposed to the headphone and configured to sense a wearing state of the headphone; and a control means electrically connected to the sensor component and configured to control the display component and/or the headphone to make a correlative response when the sensor component senses that the headphone is switched between the wearing state and a non-wearing state.
Abstract:
A button module includes an operating member, a circuit board having a pattern for detecting touch operations on the operating member, a button arranged on the circuit board, and a light guiding component further including a front side, a back side opposite to the front side, a housing defined between the front and back sides, a recess defined in the back side for hosting a light source, a through hole extending through the front side and connecting the housing to the external space, and an optical path from an inner surface of the recess to the front side. The operating member, the circuit board and the button are located in the housing with the operating member at least partially hosted in the through hole and the button abutting the light guiding component. Light from the light source located in the recess extends along the optical path to the front side.
Abstract:
The present invention is suitable to the field of electronic technology, and provides a method of manufacturing a thin film transistor and a pixel unit thereof, wherein when the thin film transistor is manufactured, the gate metal layer is used as a mask, and exposed from the back of the substrate to position the channel and the source and drain of the thin film transistor, so that the channel is self-aligned with the gate, and the source and drain are self-aligned with the gate and are symmetrical, and the thin film transistor thus manufactured has a small parasitic capacitance, and the circuit manufactured therewith is fast in operation, and less prone to occurring short circuit or open circuit. In the present invention, the characteristics that the channel is self-aligned with the gate, and the source and drain are self-aligned with the gate and are symmetrical avoid the alignment precision requirement on the mask plate in the production, thus reducing the need for the high precision lithographic apparatus, and reducing the costs and increasing the yield. In addition, the present process is suitable for manufacturing a pixel unit of a thin film transistor, the manufacturing process only requires four mask sets which do not require the critical alignment. As compared with other four mask processes which use the gray tone masks, the present process can increase the yield and reduce the costs.
Abstract:
A button module includes an operating member, a circuit board having a pattern for detecting touch operations on the operating member, a button arranged on the circuit board, and a light guiding component further including a front side, a back side opposite to the front side, a housing defined between the front and back sides, a recess defined in the back side for hosting a light source, a through hole extending through the front side and connecting the housing to the external space, and an optical path from an inner surface of the recess to the front side. The operating member, the circuit board and the button are located in the housing with the operating member at least partially hosted in the through hole and the button abutting the light guiding component. Light from the light source located in the recess extends along the optical path to the front side.
Abstract:
The present invention provides a method of manufacturing a thin film transistor pixel unit, comprising: forming a metal oxide layer, a gate insulating layer, a gate metal layer and an etching barrier layer on a substrate, wherein the metal oxide layer is in a thin film transistor region; through a same mask, etching a part of the etching barrier layer, the gate metal layer and the gate insulating layer on the substrate for forming a gate region, source and drain regions for forming contact vias, a gate interface region, and a storage capacitor region, respectively. Through additional steps including etching, metallizing, and filling, a source contact via is formed in the source region, a drain contact via is formed in the drain region, and a connecting contact via is formed in the gate interface region, respectively.
Abstract:
A method for fabricating a flexible electronic device, including the steps of: providing channels on a rigid substrate; adhering a flexible substrate to the rigid substrate with an adhesive; fabricating an electronic device on the flexible substrate; injecting a chemical substance into the channels; and reacting the chemical substance with the adhesive and peeling the flexible substrate from the rigid substrate. The rigid substrate comprises a first surface, a second surface opposite the first surface, and a side wall extending between the first surface and the second surface. The channels are provided on the first surface of the rigid substrate. The channels are in communication with an injection port, the injection port is located on the side wall of the rigid substrate, and a portion of the side wall is located between the injection port and the first surface.
Abstract:
A capacitive touchscreen includes a substrate and a transparent conductive layer arranged on the substrate. The conductive layer includes a sensing area. The sensing area has a first side and a second side opposite to the first side. The capacitive touchscreen further includes multiple transparent and conductive first electrodes, multiple transparent and conductive second electrodes, and transparent and nonconductive patterns. Each first electrode includes a first trunk extending from the first side toward the second side. Each second electrode includes a second trunk and a wiring coupled to the second trunk. Both the second trunk and the wiring extend from the first side toward the second side, and each second trunk cooperates with a corresponding first trunks to be operable to sense a touched position. The transparent and nonconductive patterns are located between the first and second electrodes to electrically isolate the first electrodes from the second electrodes.
Abstract:
Disclosed are a modularized head-mounted display device and an assembly and disassembly module. The head-mounted display device may include a display apparatus to display and output multimedia signals, an earphone apparatus to output audio signals, a connecting mechanism to connect the display apparatus and the earphone apparatus, and an assembly and disassembly module to detachably connect the display apparatus or the earphone apparatus to the connecting mechanism. The connecting mechanism of the head-mounted display device may include an assembly and disassembly module, thereby realizing the modularization of the device.
Abstract:
A flexible display device may include a display unit, and a support mechanism. The support mechanism may include multiple supporting units arranged at intervals in a direction of a side edge of the display unit and fixed to a second surface, and a movable unit. The supporting units respectively define holes that have openings facing toward each other and communicating with each other. The movable unit passes through the holes and is movable relative to the supporting units. The shape is changed by adjusting a position relationship between the movable unit and the supporting units.