Abstract:
An ejection volume of a liquid can more finely be adjusted without lowering the ejection speed. The liquid jet head includes a plurality of nozzles adapted to jet the liquid, a piezoelectric actuator having a plurality of pressure chambers corresponding respectively to the nozzles and filled with the liquid, and adapted to vary a capacity of each of the pressure chambers, and a control section adapted to apply a pulse signal to the piezoelectric actuator to thereby expand and contract the capacity of the pressure chamber so as to jet the liquid with which the pressure chamber is filled. The control section generates a drive waveform including a plurality of the pulse signals adapted to expand the capacity of the pressure chamber, and sets a crest value of either of the pulse signals other than the pulse signal applied last to a different value from a crest value of another of the pulse signals in the drive waveform.
Abstract:
A device includes a drive portion for driving a pressure generating element and controlling a state of driving the element. The drive portion includes a first drive section for causing a first current to flow to drive the element, and a second drive section for causing a second current smaller than the first current to flow to drive the element. The state of driving the element includes a first state and a second state. The second drive section causes the second current to flow in a direction in which the element is switched from the first state to the second state at a timing that is faster by a predetermined time determined in advance with respect to a timing at which the first drive section causes the first current to flow for switching the state of driving the element from the first state to the second state.
Abstract:
A drive board and so on capable of improving a printing quality are provided. The drive board according to an embodiment of the present disclosure is a board configured to output a drive signal to be applied to a liquid jet head having a plurality of nozzles, including at least one drive device which is mounted on a board surface, and which is configured to generate the drive signal configured to jet a liquid from the nozzles, and at least one constant-potential wiring line which extends along a longitudinal direction of the drive device in a mounting area of the drive device, and to which a predetermined constant potential is applied. The drive device includes a plurality of output terminals which is arranged at respective positions different from each other along the longitudinal direction, and which is configured to individually output the drive signal, and constant-potential terminals at three or more places which are arranged along the longitudinal direction, and which are electrically coupled to the constant-potential wiring line to which the same constant potential is applied.
Abstract:
An embodiment of the present disclosure is a driving circuit for ejecting liquid from a plurality of nozzles in an ejecting section in a liquid ejecting head. The driving circuit includes a first signal generation section that generates a printing driving signal for ejecting the liquid from the nozzles, a second signal generation section that generates an inspection driving signal for inspecting a state of the ejecting section, and a control section that controls the first signal generation section and the second signal generation section so as to exclusively output one of the printing driving signal and the inspection driving signal to the ejecting section.
Abstract:
There are provided a liquid ejecting head and a liquid-ejecting recording apparatus in which it is possible to improve convenience. According to an embodiment of the present disclosure, a liquid ejecting head includes an ejecting section including a plurality of nozzles for ejecting liquid, a driving circuit that drives the ejecting section based on a printing driving signal to eject the liquid from the nozzles, a power supply path connected to the driving circuit, a detection section that acquires measurement data based on a detection result of a current flowing on the power supply path, and an arithmetic operation section that performs both an inspection of a state of the ejecting section based on the measurement data obtained by the detection section and acquisition of a parameter for ejection of the liquid.