Abstract:
In order to control a plurality of inverters, which are connected on their input side to a current source each and on their output side to a common grid connection point, electrical variables are measured at the individual inverters and are used for controlling the individual inverters, currents being output by the individual inverters depending on the electrical variables measured at the location of the individual inverters Effects of the connection equipment between the individual inverters and the common grid connection point on currents are determined, electrical variables being measured at the grid connection point and are set in relation to the electrical variables measured at the same time at the individual inverters. The connection equipment between the individual inverters and the common grid connection point is taken into consideration in controlling the individual inverters.
Abstract:
In a method for operating a power supply plant having a plurality of inverters and a plant controller connected to the inverters for communication, the power supply plant has a grid connection, which is connected to an AC voltage grid. Via the grid connection, the inverters exchange electrical interchange powers with the AC voltage grid such that the power supply plant exchanges a total interchange power, composed of the respective electrical interchange powers, with the AC voltage grid. By means of a respective regulator, the inverters adjust their respective interchange powers depending on a respective deviation of a voltage profile of a grid voltage from a respective reference profile with respect to a respective reference frequency and/or depending on a respective voltage amplitude differential between a respective grid voltage and a respective reference voltage. The plant controller influences the regulators of the inverters depending on a power differential between the total interchange power and a specified interchange power. A power supply plant according to the application is designed to carry out this method.
Abstract:
A method and associated apparatus for feeding electric power from a photovoltaic system via a grid connection point into an AC grid having a low short-circuit power is disclosed. The method includes connecting a DC voltage side of at least one first inverter of the photovoltaic system to a photovoltaic generator and an AC voltage side of the at least one first inverter to the grid connection point, wherein the at least one first inverter is operated as a current source, and connecting an AC voltage side of a second inverter of the photovoltaic system to the grid connection point, wherein the second inverter is operated as a voltage source based on measurement values of an AC voltage measured in the region of the photovoltaic system and a predefined characteristic curve. For a first total short-circuit power of all first inverters operated as a current source, and a second total short-circuit power of the AC grid and of the second inverter operated as a voltage source, a ratio of the second total short-circuit power to the first total short-circuit power is greater than or equal to 2.
Abstract:
An inverter for converting DC power of a generator into grid-conforming AC power includes an inverter bridge circuit and a scanning circuit configured to trace at least one part of a characteristic curve of the generator to determine an MPP power value (PMPP). The scanning circuit is configured, in the case of a derating to a derated power (Pred), to trigger a tracing of the characteristic curve with provision of a first power profile deviating from the derated power (Pred) if an enable signal is present at the inverter, and to indicate a start and an end of the tracing by outputting a start signal and an end signal, respectively. The scanning circuit is further configured to provide a second power profile as AC power upon receiving a start signal, wherein the first power profile has a deviation from the derated power (Pred) with a sign that is opposite to a sign of a deviation of the second power profile from the derated power (Pred).
Abstract:
A method for regulating a decentralized energy generating system with a plurality of inverters (IN) is disclosed. The method includes receiving at the PPC a detected active power, reactive power and voltage amplitude at a grid connection point (PCC) of the energy generating system; and regulating, in a normal operating mode of the energy generating system, the reactive power and the active power to target values stipulated by a grid operator by virtue of the central control unit (PPC) dividing the stipulated target values into individual target stipulations for the plurality of inverters (IN) and communicating individual target stipulations to the inverters (IN). The method further includes selectively changing to a special operating mode of the energy generating system if particular criteria are present at the grid connection point (PCC) in a stipulated time interval. In the special operating mode, the central control unit (PPC) effects a reduction of the active power provided at the grid connection point (PCC) compared to the stipulated target values.
Abstract:
A method for regulating a decentralized energy generating system with a plurality of inverters (IN) is disclosed. The method includes receiving at the PPC a detected active power, reactive power and voltage amplitude at a grid connection point (PCC) of the energy generating system; and regulating, in a normal operating mode of the energy generating system, the reactive power and the active power to target values stipulated by a grid operator by virtue of the central control unit (PPC) dividing the stipulated target values into individual target stipulations for the plurality of inverters (IN) and communicating individual target stipulations to the inverters (IN). The method further includes selectively changing to a special operating mode of the energy generating system if particular criteria are present at the grid connection point (PCC) in a stipulated time interval. In the special operating mode, the central control unit (PPC) effects a reduction of the active power provided at the grid connection point (PCC) compared to the stipulated target values.
Abstract:
A method and associated apparatus for operating a power station of fluctuating electrical capacity that, besides a voltage-setting system former outputting active power and reactive power and at least one load, is connected to a limited AC grid. The method and associated apparatus includes defining a desired self-contained operating range of the system former on the PQ level, in which operating range the system former is able to efficiently correct fluctuations arising in a mains voltage of the AC grid, ascertaining a present operating point of the system former on the PQ level, and controlling an output of active power and reactive power by the power station such that the operating point of the system former is kept in the desired operating range.
Abstract:
A method for grid support by means of an inverter is disclosed, wherein the grid is supported by feeding in compensation currents. The method includes measuring a prevailing grid state, and breaking down voltages measured for measuring the prevailing grid state into symmetrical components of the grid state including positive sequence system components and negative sequence system components. The method further includes determining symmetrical components of a compensation current including positive sequence system components and negative sequence system components of the compensation current as functions of deviations of the positive sequence system components and negative sequence system components of the grid state from reference values, and feeding-in a compensation current as the vector sum of the determined symmetrical components of the compensation current
Abstract:
A method and associated apparatus for feeding electric power from a photovoltaic system via a grid connection point into an AC grid having a low short-circuit power is disclosed. The method includes connecting a DC voltage side of at least one first inverter of the photovoltaic system to a photovoltaic generator and an AC voltage side of the at least one first inverter to the grid connection point, wherein the at least one first inverter is operated as a current source, and connecting an AC voltage side of a second inverter of the photovoltaic system to the grid connection point, wherein the second inverter is operated as a voltage source based on measurement values of an AC voltage measured in the region of the photovoltaic system and a predefined characteristic curve. For a first total short-circuit power of all first inverters operated as a current source, and a second total short-circuit power of the AC grid and of the second inverter operated as a voltage source, a ratio of the second total short-circuit power to the first total short-circuit power is greater than or equal to 2.
Abstract:
For determining the topology of a grid section of an AC power grid, the grid section comprising a grid connection point, at least one branch branching off from the grid connection point and including a plurality of energy consumption and/or energy generation units, and at least one measurement point in the at least one branch, dependencies of variations of a grid voltage measured at the at least one measurement point based on variations of connection power values of at least some individual ones of the energy consumption and/or energy generation units are determined.