Abstract:
An apparatus for determining insulation resistance at a PV generator includes a first unit configured to shift a generator potential at an output terminal of the PV generator, and a second unit. The second unit is configured to determine the insulation resistance by: connecting a measurement voltage to the output terminal of the PV generator, measuring a first current value and a first voltage value at the output terminal of the PV generator before the measurement voltage is connected, measuring a second current value and a second voltage value at the output terminal of the PV generator after the measurement voltage is connected, and determining the insulation resistance of the PV generator based on the measured first and second current values and the measured first and second voltage values. The first and second units are connected in series.
Abstract:
The disclosure relates to a method for operating a DC/DC voltage converter comprising a first switching bridge with at least two first switches coupled to an input of the DC/DC voltage converter, a second switching bridge with at least two second switches coupled to an output of the DC/DC voltage converter, a transformer and at least one capacitor, wherein the first switching bridge is connected to the second switching bridge via the transformer. The first switches are switched such that a resonant circuit formed by the transformer and the at least one capacitor is operated in resonance, and the second switches are switched at the same clock frequency with a phase shift compared to the first switches, such that the second switches are switched prior to the first switches. The disclosure also relates to a DC/DC voltage converter comprising a control circuit for the first and second switches which is configured to carry out the method, and to a backup power system including such a DC/DC voltage converter.
Abstract:
An apparatus for determining insulation resistance at a PV generator includes a first unit configured to shift a generator potential at an output terminal of the PV generator, and a second unit. The second unit is configured to determine the insulation resistance by: connecting a measurement voltage to the output terminal of the PV generator, measuring a first current value and a first voltage value at the output terminal of the PV generator before the measurement voltage is connected, measuring a second current value and a second voltage value at the output terminal of the PV generator after the measurement voltage is connected, and determining the insulation resistance of the PV generator based on the measured first and second current values and the measured first and second voltage values. The first and second units are connected in series.
Abstract:
A step-up converter includes a first inductance electrically connecting a first DC voltage input of the step-up converter to a first junction point, a step-up converter switch connecting the first junction point to a second DC voltage input and a second DC voltage output of the step-up converter, a first diode connecting the first junction point to a first DC voltage output of the step-up converter, and a snubber circuit comprising a charging path and a discharging path. The discharging path runs as a series connection of a capacitor and a second diode from the first junction point to the first DC voltage output, and the charging path is connected at its one end to a junction point between the capacitor and the second diode and is arranged such that the capacitor is charged when the step-up converter switch is switched on.
Abstract:
For monitoring an inverter that includes separate input-side connectors for multiple direct-current generators with regard to the occurrence of a critical fault current, differential currents in at last two pairs of input lines are measured separately in the inverter. The at last two pairs of input lines conduct the currents that are fed in at different input-side connectors, and all pairs of input lines in their entirety transmit all currents that are fed in at the connectors. The differential currents are compared with a limit value separately for each pair of input lines. A case of the limit value being exceeded is recognized as a fault. In addition, a sum of simultaneously occurring differential currents in all pairs of input lines is determined and the sum is compared with a further limit value, wherein a case of the further limit value being exceeded is also recognized as a fault.
Abstract:
For monitoring an inverter that includes separate input-side connectors for multiple direct-current generators with regard to the occurrence of a critical fault current, differential currents in at last two pairs of input lines are measured separately in the inverter. The at last two pairs of input lines conduct the currents that are fed in at different input-side connectors, and all pairs of input lines in their entirety transmit all currents that are fed in at the connectors. The differential currents are compared with a limit value separately for each pair of input lines. A case of the limit value being exceeded is recognized as a fault. In addition, a sum of simultaneously occurring differential currents in all pairs of input lines is determined and the sum is compared with a further limit value, wherein a case of the further limit value being exceeded is also recognized as a fault.