Abstract:
A method for detecting an arc fault in a photovoltaic power circuit includes operating a photovoltaic generator at a first working point. A first signal related to a DC-current and/or a DC-voltage in the power circuit is determined. The first signal is analyzed and it is determined whether the signal indicates the presence of an electric arc in the power circuit. If so, the photovoltaic generator is operated at a second working point and a second signal related to the DC-current and/or the DC-voltage is determined. The first and second signals are then compared; and the occurrence of an arc fault in the power circuit is selectively signaled based on the comparison.
Abstract:
A circuit arrangement includes a power semiconductor switch, a freewheeling diode, and a storage choke having a core and a winding coupled between a first choke terminal and a second choke terminal. The storage choke is configured to conduct a current flowing across the power semiconductor switch. The arrangement also includes a driver circuit configured to drive the power semiconductor switch via the control terminal thereof.
Abstract:
An AC inductor includes a core, at least one permanent magnet for magnetically biasing the core, an inductor winding on the core, and a circuitry which guides an alternating current which flows through the AC inductor in such a way through the inductor winding that, during each half-wave of the alternating current, the alternating current generates a magnetization of the core which is opposite to the magnetization by the permanent magnet. This circuitry includes a commutator which guides the alternating current flowing between two contacts of the AC inductor through the same part of the inductor winding with a same flow direction during each of the half-wave of the alternating current.
Abstract:
An AC inductor includes a core, at least one permanent magnet for magnetically biasing the core, an inductor winding on the core, and a circuitry which guides an alternating current which flows through the AC inductor in such a way through the inductor winding that, during each half-wave of the alternating current, the alternating current generates a magnetization of the core which is opposite to the magnetization by the permanent magnet. This circuitry includes a commutator which guides the alternating current flowing between two contacts of the AC inductor through the same part of the inductor winding with a same flow direction during each of the half-wave of the alternating current.
Abstract:
A solar module includes a safety circuit, and a series circuit of bypass diodes, which is arranged between solar module connections, wherein the bypass diodes have bypass connections at both ends and all connecting points of the series circuit of bypass diodes. The solar module also includes a series circuit of solar partial modules having partial module terminals at both ends and all connecting points of the series circuit of solar partial modules, wherein each bypass diode is associated with precisely one solar partial module, and a plurality of semiconductor switches configured to disconnect the solar module connections from voltage at an associated partial module terminal when a disconnection signal is received by the safety circuit. Each of the plurality of semiconductor switches is configured to switch a solar partial module associated therewith into a voltage-free or current-free state, and at least one bypass connection is directly connected to an associated partial module terminal and at least one bypass connection is connected to an associated partial module terminal by means of one of the semiconductor switches.
Abstract:
A method for operating an inverter with reactive power capability that includes a voltage link circuit and an unfolding bridge, wherein poles of the voltage link circuit are configured to be selectively connected to terminals of an AC output in different configurations by means of the unfolding bridge, in order to change a polarity of the AC output relative to the voltage link circuit. The method includes in the case of a phase shift between an AC current (I) and an AC voltage (U) at the AC output reversing the direction of a current flowing via the voltage link circuit. Reversing the direction of the current flowing via the voltage link circuit includes disconnecting the AC output from the voltage link circuit, providing a freewheeling path between the terminals of the AC output, while the AC output is disconnected from the voltage link circuit, and reconnecting the AC output to the voltage link circuit with the polarity of the AC output relative to the voltage link circuit being changed by the unfolding bridge.
Abstract:
A method for operating an inverter with reactive power capability that includes a voltage link circuit and an unfolding bridge, wherein poles of the voltage link circuit are configured to be selectively connected to terminals of an AC output in different configurations by means of the unfolding bridge, in order to change a polarity of the AC output relative to the voltage link circuit. The method includes in the case of a phase shift between an AC current (I) and an AC voltage (U) at the AC output reversing the direction of a current flowing via the voltage link circuit. Reversing the direction of the current flowing via the voltage link circuit includes disconnecting the AC output from the voltage link circuit, providing a freewheeling path between the terminals of the AC output, while the AC output is disconnected from the voltage link circuit, and reconnecting the AC output to the voltage link circuit with the polarity of the AC output relative to the voltage link circuit being changed by the unfolding bridge.
Abstract:
The invention relates to a process of connecting an AC output of a transformerless inverter of a solar power plant to an internal AC power grid at an input side of a galvanic isolation, while an offset voltage for shifting a potential center point of a photovoltaic generator connected to the inverter is applied. The process includes: (i) synchronizing the inverter with the power grid; (ii) essentially matching a potential center point of the current-carrying lines of the AC output and a potential center point of the power grid, while only one of the potential center points of the current-carrying lines and the power grid is yet shifted by the offset voltage; and (iii) galvanically connecting all current-carrying lines of the AC output with the power grid only after the steps of synchronizing and essentially matching.
Abstract:
The invention relates to a process of connecting an AC output of a transformerless inverter of a solar power plant to an internal AC power grid at an input side of a galvanic isolation, while an offset voltage for shifting a potential center point of a photovoltaic generator connected to the inverter is applied. The process includes: (i) synchronizing the inverter with the power grid; (ii) essentially matching a potential center point of the current-carrying lines of the AC output and a potential center point of the power grid, while only one of the potential center points of the current-carrying lines and the power grid is yet shifted by the offset voltage; and (iii) galvanically connecting all current-carrying lines of the AC output with the power grid only after the steps of synchronizing and essentially matching.
Abstract:
A circuit arrangement includes a power semiconductor switch, a freewheeling diode, and a storage choke having a core and a winding coupled between a first choke terminal and a second choke terminal. The storage choke is configured to conduct a current flowing across the power semiconductor switch. The arrangement also includes a driver circuit configured to drive the power semiconductor switch via the control terminal thereof.