Abstract:
A method, apparatus and system for artificial intelligence-based HDRL planning and control for coordinating a team of platforms includes implementing a global planning layer for determining a collective goal and determining, by applying at least one machine learning process, at least one respective platform goal to be achieved by at least one platform, implementing a platform planning layer for determining, by applying at least one machine learning process, at least one respective action to be performed by the at least one of the platforms to achieve the respective platform goal, and implementing a platform control layer for determining at least one respective function to be performed by the at least one of the platforms. In the method, apparatus and system despite the fact that information is shared between at least two of the layers, the global planning layer, the platform planning layer, and the platform control layer are trained separately.
Abstract:
A hybrid control system includes a control agent and a control engine. The control engine is configured to install a master plan to the control agent. The master plan includes a plurality of high-level tasks. The control agent is configured to operate according to the master plan to, for each high-level task of the high-level tasks, obtain one or more low-level controls and to perform the one or more low-level controls to realize the high-level task. The control agent is configured to operate according to the master plan to transition between the plurality of high-level tasks thereby causing a seamless transition between operating at least partially autonomously and operating at least partially based on input from the tele-operator, based at least on context for the control agent, to operate at least partially autonomously and at least partially based on input from the tele-operator during execution of the master plan.
Abstract:
Embodiments of the present invention generally relate to computer aided rebar measurement and inspection systems. In some embodiments, the system may include a data acquisition system configured to obtain fine-level rebar measurements, images or videos of rebar structures, a 3D point cloud model generation system configured to generate a 3D point cloud model representation of the rebar structure from information acquired by the data acquisition system, a rebar detection system configured to detect rebar within the 3D point cloud model generated or the rebar images or videos of the rebar structures, a rebar measurement system to measure features of the rebar and rebar structures detected by the rebar detection system, and a discrepancy detection system configured to compare the measured features of the rebar structures detected by the rebar detection system with a 3D Building Information Model (BIM) of the rebar structures, and determine any discrepancies between them.
Abstract:
Embodiments of the present invention generally relate to computer aided rebar measurement and inspection systems. In some embodiments, the system may include a data acquisition system configured to obtain fine-level rebar measurements, images or videos of rebar structures, a 3D point cloud model generation system configured to generate a 3D point cloud model representation of the rebar structure from information acquired by the data acquisition system, a rebar detection system configured to detect rebar within the 3D point cloud model generated or the rebar images or videos of the rebar structures, a rebar measurement system to measure features of the rebar and rebar structures detected by the rebar detection system, and a discrepancy detection system configured to compare the measured features of the rebar structures detected by the rebar detection system with a 3D Building Information Model (BIM) of the rebar structures, and determine any discrepancies between them.
Abstract:
A multi-sensor, multi-modal data collection, analysis, recognition, and visualization platform can be embodied in a navigation capable vehicle. The platform provides an automated tool that can integrate multi-modal sensor data including two-dimensional image data, three-dimensional image data, and motion, location, or orientation data, and create a visual representation of the integrated sensor data, in a live operational environment. An illustrative platform architecture incorporates modular domain-specific business analytics “plug ins” to provide real-time annotation of the visual representation with domain-specific markups.
Abstract:
A system and method for efficiently locating in 3D an object of interest in a target scene using video information captured by a plurality of cameras. The system and method provide for multi-camera visual odometry wherein pose estimates are generated for each camera by all of the cameras in the multi-camera configuration. Furthermore, the system and method can locate and identify salient landmarks in the target scene using any of the cameras in the multi-camera configuration and compare the identified landmark against a database of previously identified landmarks. In addition, the system and method provide for the integration of video-based pose estimations with position measurement data captured by one or more secondary measurement sensors, such as, for example, Inertial Measurement Units (IMUs) and Global Positioning System (GPS) units.
Abstract:
A multi-sensor, multi-modal data collection, analysis, recognition, and visualization platform can be embodied in a navigation capable vehicle. The platform provides an automated tool that can integrate multi-modal sensor data including two-dimensional image data, three-dimensional image data, and motion, location, or orientation data, and create a visual representation of the integrated sensor data, in a live operational environment. An illustrative platform architecture incorporates modular domain-specific business analytics “plug ins” to provide real-time annotation of the visual representation with domain-specific markups.
Abstract:
A computing system includes a vision-based user interface platform to, among other things, analyze multi-modal user interactions, semantically correlate stored knowledge with visual features of a scene depicted in a video, determine relationships between different features of the scene, and selectively display virtual elements on the video depiction of the scene. The analysis of user interactions can be used to filter the information retrieval and correlating of the visual features with the stored knowledge.
Abstract:
Biofeedback virtual reality sleep assistant technologies monitor one or more physiological parameters while presenting an immersive environment. The presentation of the immersive environment changes over time in response to changes in the values of the physiological parameters. The changes in the presentation of the immersive environment are configured using biofeedback technology and are designed to promote sleep.
Abstract:
Methods and apparatuses for tracking objects comprise one or more optical sensors for capturing one or more images of a scene, wherein the one or more optical sensors capture a wide field of view and corresponding narrow field of view for the one or more images of a scene, a localization module, coupled to the one or more optical sensors for determining the location of the apparatus, and determining the location of one more objects in the one or more images based on the location of the apparatus and an augmented reality module, coupled to the localization module, for enhancing a view of the scene on a display based on the determined location of the one or more objects.