Abstract:
A computer-implemented method includes receiving a selection of a distinct area within an image captured using a client device, and receiving, from the client device, (i) an indication of the selection and (ii) a set of technical capabilities of the client device indicating one or more available communication channels from a set of communication channels. The example method further includes responsive to receiving the indication, retrieving contact information indicating a plurality of contact methods for contacting the first entity represented by the image, and determining a first contact method for contacting the first entity based on the set of technical capabilities of the client device, the first contact method being one of the plurality of contact methods for contacting the first entity. The example method further includes causing the client device to display an interface allowing the user to contact the first entity according to the first contact method.
Abstract:
In a computer-implemented method and system for capturing the condition of a structure, the structure is scanned with an unmanned aerial vehicle (UAV). Data collected by the UAV corresponding to points on a surface of a structure is received and a 3D point cloud is generated for the structure, where the 3D point cloud is generated based at least in part on the received UAV data. A 3D model of the surface of the structure is reconstructed using the 3D point cloud.
Abstract:
In a computer-implemented method and system for capturing the condition of a structure, the structure is scanned with an unmanned aerial vehicle (UAV). Data collected by the UAV corresponding to points on a surface of a structure is received and a 3D point cloud is generated for the structure, where the 3D point cloud is generated based at least in part on the received UAV data. A 3D model of the surface of the structure is reconstructed using the 3D point cloud.
Abstract:
Systems and methods for assessing a physical structure are provided. Information indicative of an infrared image that includes a portion of the physical structure is received, and one or more indicators within the infrared image exceeding a heat threshold are determined. A plurality of characteristics of the one or more indicators are determined. Information indicative of an image of the portion of the physical structure, corresponding to the infrared image, is received, and locations of the one or more indicators are determined. The image is analyzed according to the locations of the one or more indicators to determine information indicative of (i) a fastener coupled to the physical structure or (ii) damage to the physical structure, and the one or more indicators are classified according to the analysis. Based on the classification of the one or more indicators, a condition of the physical structure is determined.
Abstract:
In a computer-implemented method and system for capturing the condition of a structure, the structure is scanned with a three-dimensional (3D) scanner. The 3D scanner generates 3D data. A point cloud or 3D model is constructed from the 3D data. The point cloud or 3D model is then analyzed to determine the condition of the structure.
Abstract:
In a method and system for scanning a structure, a structure scanner may acquire multiple scans of a surface of a structure. Each of the scans may correspond to different portions of the surface. The property inspection system may generate a 3D model of the surface using the scans. To account for potential changes in position and/or orientation of the structure scanner between scans, the structure scanner may self-calibrate using a fiducial marker. By correcting for changes in position and orientation over time, the structure scanner may accurately map the scans of the different portions of the surface to a 3D model of the surface.
Abstract:
A computer-implemented method includes detecting a plurality of faces within one or more images, and, for each of the plurality of faces, registering the face with a contact. The method further includes receiving a selection of one of the plurality of faces from a user, and, in response to the selection of the one of the plurality of faces, determining the contact associated with the selected one of the plurality of faces. Still further, the method includes retrieving information about the contact, and generating a list of selectable communication types to be displayed to the user on a display device.
Abstract:
The method, system, and computer-readable medium facilitates monitoring a vehicle operator during the course of vehicle operation to determine whether the vehicle operator is impaired (e.g., distracted, drowsy, intoxicated) and alerting the vehicle operator using a haptic alert delivered by a wearable computing device worn by the vehicle operator when impairment is detected. The method, system, and computer-readable medium may monitor the vehicle operator, the environment surrounding the vehicle, and/or forces acting on the vehicle using a variety of sensors, including optical sensors or accelerometers. In particular, optical sensors may monitor the vehicle operator to detect eye blinks, head nods, head rotations, and/or gaze fixation. Optical sensors may also monitor the road ahead of the vehicle to detect lane deviation, lane centering, and time to collision. Accelerometers may detect acceleration in the direction of vehicle travel and/or lateral acceleration.
Abstract:
Disclosed systems and methods automatically assess buildings and structures. A device may receive one or more images of a structure, such as a building or portion of the building, and then label and extract relevant data. The device may then train a system to automatically assess other data describing similar buildings or structures based on the labeled and extracted data. After training, the device may then automatically assess new data, and the assessment results may be sent directly to a client or to an agent for review and/or processing.
Abstract:
In a method and system for scanning a structure, a structure scanner may acquire multiple scans of a surface of a structure. Each of the scans may correspond to different portions of the surface. The property inspection system may generate a 3D model of the surface using the scans. To account for potential changes in position and/or orientation of the structure scanner between scans, the structure scanner may self-calibrate using a fiducial marker. By correcting for changes in position and orientation over time, the structure scanner may accurately map the scans of the different portions of the surface to a 3D model of the surface.