Abstract:
The present invention provides water-based energy curable compositions that exhibit improved printability, adhesion, opacity, and wash-up properties. The compositions comprise one or more inert water-based polyurethane resins and one or more water-based phosphate esters. Addition of the inert polyurethane resins and phosphate esters improves adhesion of the energy curable compositions to a variety of substrates.
Abstract:
The present invention is directed to energy curable offset conductive inks and hybrid offset conductive ink compositions that contain an oxidative curable ink and the energy curable offset conductive ink. The conductive inks and ink compositions exhibit low levels of resistance and hence have superior conductivity.
Abstract:
Provided are high viscosity essentially non-aqueous dispersions containing acrylic core/shell polymer particles in a non-aqueous solvent; sheetfed, heatset and coldset lithographic ink compositions containing the dispersions; and methods of printing with ink containing the dispersions to improve the setting and drying properties and rub resistance of sheet fed offset, heatset and coldset lithographic inks. The lithographic inks containing the dispersions set quickly enough to allow processing of printed sheets soon after printing.
Abstract:
The present invention provides water-based energy curable compositions that exhibit improved printability, adhesion, opacity, and wash-up properties. The compositions comprise one or more inert water-based polyurethane resins and one or more water-based phosphate esters. Addition of the inert polyurethane resins and phosphate esters improves adhesion of the energy curable compositions to a variety of substrates.
Abstract:
Provided are retort inks containing binder, colorant and carrier, where the cured ink has a bond strength to a layer of retort material of at least about 500 g/2.54 cm before retorting and/or the binder has an endotherm of 0.6 J/g or less or after retorting a bond strength of at least about 375 g/2.54 cm or destruct strength. Laminate plies carrying the ink and retorts using the ink also are provided.
Abstract:
The present invention concerns polyester resins of General Formula I (HO—[R1R2C(CH2—)]a[—OCOCxHyCO2—]b[—CpHzO—]c—H) or General Formula II (HO—[R1R2C(CH2—)2]a[—OCOCxHyCO2—]b[—CH2CR3(CO2H)CH2O]d—H), wherein R1, R2, a, b, c, d, x, y, p, and z are as defined herein, for use in inks and coating compositions. The polyester resins of the present invention are particularly, but not exclusively, suitable to enhance the adhesion between a printing ink or coating composition and a substrate, especially a plastic substrate, to which it is applied. The polyester adhesion promoters of the invention are compatible with urethane-based inks and coating compositions.
Abstract:
Provided are retort inks containing binder, colorant and carrier, where the cured ink has a bond strength to a layer of retort material of at least about 500 g/2.54 cm before retorting and/or the binder has an endotherm of 0.6 J/g or less or after retorting a bond strength of at least about 375 g/2.54 cm or destruct strength. Laminate plies carrying the ink and retorts using the ink also are provided.
Abstract:
Provided are high viscosity essentially non-aqueous dispersions containing acrylic core/shell polymer particles in a non-aqueous solvent; sheetfed, heatset and coldset lithographic ink compositions containing the dispersions; and methods of printing with ink containing the dispersions to improve the setting and drying properties and rub resistance of sheet fed offset, heatset and coldset lithographic inks. The lithographic inks containing the dispersions set quickly enough to allow processing of printed sheets soon after printing.
Abstract:
The present invention is directed to energy curable offset conductive inks and hybrid offset conductive ink compositions that contain an oxidative curable ink and the energy curable offset conductive ink. The conductive inks and ink compositions exhibit low levels of resistance and hence have superior conductivity.
Abstract:
Provided are retort inks containing binder, colorant and carrier, where the cured ink has a bond strength to a layer of retort material of at least about 500 g/2.54 cm before retorting and/or the binder has an endotherm of 0.6 J/g or less or after retorting a bond strength of at least about 375 g/2.54 cm or destruct strength. Laminate plies carrying the ink and retorts using the ink also are provided.