Abstract:
A positive electrode active material includes a lithium-transition metal composite phosphate including a first crystalline phase having a composition represented by Formula 1 and having an olivine structure, and a second crystalline phase having a composition represented by Formula 2 and having a pyrophosphate-containing structure, wherein the second crystalline phase is in an amount of greater than 0 mole percent and not greater than 50 mole percent with respect to a total number of moles of the first crystalline phase and the second crystalline phase, a positive electrode, a secondary battery: LixM1yPO4 Formula 1 LiaM2b(P2O7)4 Formula 2 In Formulas 1 and 2, 0.9≤x≤1.1, 0.9≤y≤1.1, 5.5≤a≤6.5, and 4.8≤b≤5.2, and M1 and M2 are each independently an element from Groups 3 to 11 in the 4th period of the Periodic Table of the Elements, or a combination thereof.
Abstract:
A cathode active material includes a compound represented by Formula 1: Lix(Co1-yMy)z(P2O7)4 Formula 1 wherein in Formula 1, 5≤x≤7, 0.01≤y≤0.1, and 4≤z≤6, and M is a Group 3 to 11 element belonging to 5th and 6th periods in the Periodic Table of the elements, or a combination thereof.
Abstract:
Provided is a metal-air battery including a cathode having an air path. The metal-air battery includes a plurality of folded cells stacked in a direction, and each of the folded cells includes: an anode having a U-shape defined by first and second portions separated from and parallel to each other, and a side portion which connects the first and the second portions to each other; an anode protection film arranged on an inner surface of the anode; and a first cathode and a second cathode on the anode protection film, the first cathode and the second cathode arranged facing each other between the first portion and the second portion of the anode. The first cathode and the second cathode each includes a base which contacts the anode protection film, and a plurality of protrusion units extended from the base.
Abstract:
A metal air battery includes at least one gas diffusion layer assembly; a positive electrode layer disposed on a surface of the at least one gas diffusion layer assembly, wherein the positive electrode layer is capable of using oxygen as an active material; a protective electrolyte membrane disposed on the positive electrode layer; and a negative electrode metal layer disposed on the protective electrolyte membrane, wherein the gas diffusion layer assembly includes a first gas diffusion layer and a second gas diffusion layer, wherein the second gas diffusion layer is disposed on a first surface and an opposite second surface of the first gas diffusion layer, and wherein a gas diffusivity of the first gas diffusion layer is greater than a gas diffusivity of the second gas diffusion layer. Also, the gas diffusion layer assembly described above, and a method of manufacturing a metal air battery including the gas diffusion layer assembly.
Abstract:
A composite cathode includes: a layer including porous particles; and a first electrolyte disposed between porous particles of the layer including porous particles, wherein the first electrolyte is disposed on at least a portion of a surface of the layer including porous particles, and wherein a weight ratio of the porous particles to the first electrolyte is less than about 1:3.7.
Abstract:
A cathode active material includes a compound represented by Formula 1:
Lix(Co1−yMy)z(P2O7)4 Formula 1
wherein in Formula 1, 5≤x≤7, 0.01≤y≤0.1, and 4≤z≤6, and M is a Group 3 to 11 element belonging to 5th and 6th periods in the Periodic Table of the elements, or a combination thereof.
Abstract:
A gas diffusion layer for a metal-air battery, the gas diffusion layer including: a porous layer including non-conductive fiber structures, a conductive carbon layer including a carbon material that is disposed on a surface of a non-conductive fiber structure of the plurality of non-conductive fiber structures.
Abstract:
A metal-air battery includes a gas diffusion layer; a first cathode and a second cathode disposed on opposite surfaces of the gas diffusion layer, respectively; an ion conducting membrane, including a folded portion, surrounding the first cathode, the gas diffusion layer, and the second cathode and disposed on each of the first cathode and the second cathode; and an anode, including a folded portion, surrounding the ion conducting membrane and disposed on the ion conducting membrane, where the folded portion of the anode is folded in a same direction as the folded portion of the ion conducting membrane.
Abstract:
Metal-air batteries include first and second battery stack structures each comprising an anode, an anode electrolyte layer, a cathode, and a gas diffusion layer, and cathode current collectors disposed between the first and second battery stack structures and having a non-flat shape, where the cathodes of the first and second battery stack structures face each other, the cathode current collectors contact the gas diffusion layers of the first and second battery stack structures, at least one of the cathode current collectors includes protrusions, and an empty space between the cathode current collector and the first and second battery stack structures is an air supply unit to supply air to the gas diffusion layer.
Abstract:
A composite electrolyte film includes a composite electrolyte layer including: a first domain including a plurality of two-dimensional nanostructures, and a second domain which is disposed in an interstitial space between neighboring two-dimensional nanostructures of the plurality of two-dimensional nanostructures, wherein the plurality of two-dimensional nanostructures includes a first electrolyte.