Abstract:
A memory system and method for power management are disclosed. In one embodiment, a memory system is provided comprising at least one memory die, a sensor configured to sense an average amount of power consumed by the memory system over a time period, and a controller. The controller is configured to maintain a token bucket that indicates an amount of power currently available for memory operations in the at least one memory die and is further configured to reduce a number of tokens in the token bucket by an amount of power consumed over the time period as indicated by the average amount of power sensed by the sensor over the time period. Other embodiments are disclosed.
Abstract:
A memory system and method for power management are disclosed. In one embodiment, a variable credit value that indicates an amount of power currently available for memory operations in the memory system, wherein for each update cycle of the variable credit value, the variable credit value is reduced by a computed consumed energy value for that update cycle; receives a request to perform a memory operation; determines if the variable credit value is greater than a minimum value required to perform the memory operation; and grants the request to perform the memory operation only if it is determined that the variable credit value is greater than the minimum value. Other embodiments are disclosed.
Abstract:
A memory system and method are provided for selecting memory dies for memory access operations based on memory die temperatures. The memory system has a plurality of memory dies, where each memory die has its own temperature sensor. In one embodiment, the memory system selects which memory dies to perform memory access operations in based on the temperatures of the memory dies. In another embodiment, a controller of the memory system selects which memory dies to thermal throttle memory access operations in based on the detected temperatures. In yet another embodiment, a temperature-aware media management layer module of the memory l system routes a memory access operation from a first memory die to a second memory die based on the temperatures of the memory dies.
Abstract:
A memory system and method for power-based operation scheduling are provided. In one embodiment, a memory system begins to perform a plurality of operations in an order in which they are stored in a queue. Before performing a next operation in the queue, the memory system determines whether the power consumed by performing the next operation would exceed a maximum power threshold. In response to determining that the power consumed would exceed the maximum power threshold, the memory system selects an operation out of order from the queue to perform instead, so the maximum power threshold would not be exceeded. Other embodiments are provided.
Abstract:
A memory system and method for reducing peak current consumption. In one embodiment, a method is provided that is performed in a memory system comprising a memory with a plurality of blocks, wherein each block has a peak current consumption. In this method, a plurality of metablocks is created, wherein each metablock is created by grouping together blocks with complementary peak current consumption. Next, the metablocks are programmed. Because each of the metablocks has blocks with complementary peak current consumption, each of the metablocks has similar peak current consumption when programmed. Other embodiments are provided.
Abstract:
A method and system are disclosed for improved block erase cycle life prediction and block management in a non-volatile memory. The method includes the storage device tracking information relating to a first erase cycle count at which the block erase time exceeded a predetermined threshold relative to a first erase cycle at which this occurred in other blocks. Blocks having a later relative erase cycle at which the erase time threshold is exceeded are assumed to have a greater erase cycle life than those that need to exceed the erase time threshold at an earlier erase cycle. This information is used to adjust wear leveling in the form of free block selection, garbage collection block selection and other block management processes. Alternatively or in combination, the predicted erase cycle life information is used to adjust program and/or erase parameters such as erase voltage and time.
Abstract:
A storage module and method for scheduling memory operations for peak-power management and balancing are provided. In one embodiment, a storage module maintains a count of time slots over a period of time. The period of time corresponds to an amount of time between periodic power peaks of a memory operation. For each time slot, the storage module determines whether to commence a memory operation on one or more of the plurality of memory dies based on whether a power peak generated in the time slot by the memory operation would exceed a power threshold allowed for the time slot. Other embodiments are provided.
Abstract:
A memory system may enact emergency activities, such as preventing a write abort, by identifying when a power loss occurs at the earliest time possible. The prediction of a power loss during the process of programming a page, but before all power is lost may allow for the memory to initiate emergency activities. A power loss prediction mechanism may utilize a data link lost signal to trigger data protection. The data link lost signal may indicate that the data connection between the memory and a host has been lost. The signal indicating a data link loss may precede the actual detection of a power loss so that data protection can be implemented quicker.
Abstract:
A storage module and method are provided for optimized power utilization. In one embodiment, a storage module is provided comprising a storage controller and a plurality of memory dies in communication with the storage controller. The storage controller determines if sufficient power is available to perform an operation on one of the memory dies. In response to determining that sufficient power is not available to perform the operation on one of the memory dies, the storage controller determines if suspending an in-progress operation on another one of the memory dies would provide enough power to perform the operation. In response to determining that suspending the in-progress operation would provide enough power to perform the operation, the storage controller suspends the in-progress operation and performs the operation. Instead of suspending an in-progress operation, the storage controller can instead use a reduced power version of the operation or the in-progress operation.
Abstract:
A memory system and method for power management are disclosed. In one embodiment, a memory system maintains a variable credit value indicating an amount of power currently available for memory operations in the memory system, the variable credit value having an upper limit that reflects a maximum power limit for the memory system. The memory system receives a command to perform a memory operation, wherein a plurality of resources are required to perform the memory operation, each resource being associated with a credit value. Prior to performing the memory operation, the memory system checks whether the variable credit value indicates that there is sufficient power available to perform the memory operation. Resource(s) required to perform the memory operation that are already being used in the memory system are not counted against the variable credit value.