Abstract:
A catalyst composition including the compound of Formula I as an internal electron donor, wherein: R1, R2, R3, R4, R5 and R6 are independently selected from a group consisting of hydrogen, straight, branched and cyclic alkyl and aromatic substituted and unsubstituted hydrocarbyl having 1 to 20 carbon atoms; R7 is selected from a group consisting of straight, branched and cyclic alkyl and aromatic substituted and unsubstituted hydrocarbyl having 1 to 20 carbon atoms; and R8 is selected from a group consisting of aromatic substituted and unsubstituted hydrocarbyl having 6 to 20 carbon atoms. Also disclosed is a process for preparing said polymerization catalyst composition; a polymerization catalyst system comprising said catalyst composition, a co-catalyst and optionally an external electron donor; a polyolefin obtainable by the process; and use of the compound of Formula I as in internal electron donor in catalysts for polymerization of olefins.
Abstract:
The present invention relates to a catalyst composition comprising the compound represented by the Fischer projection of formula (I) as an internal electron donor, (I) wherein: R1, R2, R3, R4, R5 and R6 are the same or different and are independently selected from a group consisting of hydrogen, straight, branched and cyclic alkyl and aromatic substituted and unsubstituted hydrocarbyl having 1 to 20 carbon atoms; R7 is selected from a group consisting of straight, branched and cyclic alkyl and aromatic substituted and unsubstituted hydrocarbyl having 1 to 20 carbon atoms; and R8 is selected from a group consisting of aromatic substituted and unsubstituted hydrocarbyl having 6 to 20 carbon atoms; N is nitrogen atom; O is oxygen atom; and C is carbon atom. The present invention also relates to a process for preparing said polymerization catalyst composition and to a polymerization catalyst system comprising said catalyst composition, a cocatalyst and optionally an external electron donor. Furthermore, the present invention relates to a polyolefin obtainable by the process according to the present invention and to the use of the compound of formula (I) as in internal electron donor in catalysts for polymerization of olefins.
Abstract:
The present invention relates to a catalyst system comprising a procatalyst, a co-catalyst and an external electron donor, wherein the external electron donor comprises a compound having the structure according to Formula I: Si(L)n(OR11)4-n (Formula I), wherein, Si is a silicon atom with valency 4+; O is an oxygen atom with valency 2− and O is bonded to Si via the silicon-oxygen bond; n is 1, 2, 3 or 4; R11 is a selected from the group consisting of linear, branched and cyclic alkyl having at most 20 carbon atoms and aromatic substituted and unsubstituted hydrocarbyl having 6 to 20 carbon atoms; L is a group represented by (Formula II), wherein, L is bonded to the silicon atom via the nitrogen-silicon bond; L has a single substituent on the nitrogen atom, where this single substituent is an imine carbon atom; and X and Y are independently selected from the group consisting of a hydrogen atom; a heteroatom selected from group 13, 14, 15, 16 or 17 of the IUPAC Periodic Table of the Elements; a linear, branched and cyclic alkyl having at most 20 carbon atoms, optionally containing a heteroatom selected from group 13, 14, 15, 16 or 17 of the IUPAC Periodic Table of the Elements and an aromatic substituted and unsubstituted hydrocarbyl having 6 to 20 carbon atoms, optionally containing a heteroatom selected from group 13, 14, 15, 16 or 7 of the IUPAC Periodic Table of the Elements.
Abstract:
The present invention relates to a catalyst system comprising a procatalyst, a co-catalyst and an external electron donor, wherein the external electron donor comprises a compound having the structure according to Formula I: Si(L)n(OR11)4−n (Formula I), wherein, Si is a silicon atom with valency 4+; O is an oxygen atom with valency 2− and O is bonded to Si via the silicon-oxygen bond; n is 1, 2, 3 or 4; R11 is a selected from the group consisting of linear, branched and cyclic alkyl having at most 20 carbon atoms and aromatic substituted and unsubstituted hydrocarbyl having 6 to 20 carbon atoms; L is a group represented by Formula II wherein, L is bonded to the silicon atom via the nitrogen-silicon bond; L has a single substituent on the nitrogen atom, where this single substituent is an imine carbon atom; and X and Y are independently selected from the group consisting of a hydrogen atom; a heteroatom selected from group 13, 14, 15, 16 or 17 of the IUPAC Periodic Table of the Elements; a linear, branched and cyclic alkyl having at most 20 carbon atoms, optionally containing a heteroatom selected from group 13, 14, 15, 16 or 17 of the IUPAC Periodic Table of the Elements and an aromatic substituted and unsubstituted hydrocarbyl having 6 to 20 carbon atoms, optionally containing a heteroatom selected from group 13, 14, 15, 16 or 17 of the IUPAC Periodic Table of the Elements.
Abstract:
The present invention relates to a catalyst system comprising a procatalyst, a co-catalyst and an external electron donor, wherein the external electron donor comprises a compound having the structure according to Formula I: Si(L)n(OR11)4-n (Formula I), wherein, Si is a silicon atom with valency 4+; O is an oxygen atom with valency 2− and O is bonded to Si via the silicon-oxygen bond; n is 1, 2, 3 or 4; R11 is a selected from the group consisting of linear, branched and cyclic alkyl having at most 20 carbon atoms and aromatic substituted and unsubstituted hydrocarbyl having 6 to 20 carbon atoms; L is a group represented by (Formula II), wherein, L is bonded to the silicon atom via the nitrogen-silicon bond; L has a single substituent on the nitrogen atom, where this single substituent is an imine carbon atom; and X and Y are independently selected from the group consisting of a hydrogen atom; a heteroatom selected from group 13, 14, 15, 16 or 17 of the IUPAC Periodic Table of the Elements; a linear, branched and cyclic alkyl having at most 20 carbon atoms, optionally containing a heteroatom selected from group 13, 14, 15, 16 or 17 of the IUPAC Periodic Table of the Elements and an aromatic substituted and unsubstituted hydrocarbyl having 6 to 20 carbon atoms, optionally containing a heteroatom selected from group 13, 14, 15, 16 or 7 of the IUPAC Periodic Table of the Elements.
Abstract:
A process for preparing a catalyst component, including: contacting a compound R9zMgX2-z wherein R9 is aromatic, aliphatic or cyclo-aliphatic group containing up to 20 carbon atoms, X is a halide, and z is larger than 0 and smaller than 2, with an alkoxy- or aryloxy-containing silane compound to give a first intermediate reaction product; contacting the first intermediate reaction product with at least one activating compound selected electron donors, compounds of formula M(OR10)v-w(OR11)w, wherein M is Ti, Zr, Hf, Al or Si, and M(OR10)v-w(R11)w wherein M is Si, each R10 and R11, independently, represent an alkyl, alkenyl or aryl group, v is the valency of M, v is 3 or 4, and w is less than v, to give a second intermediate reaction product; and contacting the second intermediate reaction product with a halogen-containing Ti-compound, a monoester as activating agent, and a 1,3-diether as an internal electron donor.
Abstract:
The present invention relates to a method for preparing di-organo-dialkoxysilanes, in particular di-organo-dialkoxysilanes wherein one or both of the organic substituents are bulky. The method comprises reacting a tetraalkoxysilane compound with a first Grignard reagent to form a mono-organo-tri-alkoxysilane compound, which is then reacted with a chlorinating agent to form a chlorinated mono-organo-di-alkoxysilane which is then reacted with a second Grignard reagent to form the di-organo-di-alkoxysilane compound.
Abstract:
A catalyst composition comprising a monoester, the compound represented by formula (I) as an internal electron donor, and optionally an additional internal electron donor selected from a group consisting of diesters and diethers, wherein: R1, R2, R3, R4, R5 and R6 are hydrogen, straight, branched and cyclic alkyl having at most 20 carbon atoms and aromatic substituted and unsubstituted hydrocarbyl having 6 to 20 carbon atoms, R7 is a straight, branched and cyclic alkyl having at most 20 carbon atoms and aromatic substituted and unsubstituted hydrocarbyl having 6 to 20 carbon atoms, and R8 is an aromatic substituted and unsubstituted hydrocarbyl having 6 to 20 carbon atoms. Also described is a process for preparing the polymerization catalyst composition, a polymerization catalyst system comprising the catalyst composition, a co-catalyst and optionally an external electron donor; and use of the catalyst system for polymerization of olefins.
Abstract:
A process for preparing a catalyst component, including:contacting a compound R9zMgX2−z wherein R9 is aromatic, aliphatic or cyclo-aliphatic group containing up to 20 carbon atoms, X is a halide, and z is larger than 0 and smaller than 2, with an alkoxy- or aryloxy-containing silane compound to give a first intermediate reaction product;contacting the first intermediate reaction product with at least one activating compound selected electron donors, compounds of formula M(OR10)v-w(OR11)w, wherein M is Ti, Zr, Hf, Al or Si, and M(OR10)v-w(R11)w wherein M is Si, each R10 and R11, independently, represent an alkyl, alkenyl or aryl group, v is the valency of M, v is 3 or 4, and w is less than v, to give a second intermediate reaction product; andcontacting the second intermediate reaction product with a halogen-containing Ti-compound, a monoester as activating agent, and a 1,3-diether as an internal electron donor.
Abstract:
The present invention relates to a catalyst composition comprising the compound represented by the Fischer projection of formula (I) as an internal electron donor, (I) wherein: R1, R2, R3, R4, R5 and R6 are the same or different and are independently selected from a group consisting of hydrogen, straight, branched and cyclic alkyl and aromatic substituted and unsubstituted hydrocarbyl having 1 to 20 carbon atoms; R7 is selected from a group consisting of straight, branched and cyclic alkyl and aromatic substituted and unsubstituted hydrocarbyl having 1 to 20 carbon atoms; and R8 is selected from a group consisting of aromatic substituted and unsubstituted hydrocarbyl having 6 to 20 carbon atoms; N is nitrogen atom; O is oxygen atom; and C is carbon atom. The present invention also relates to a process for preparing said polymerization catalyst composition and to a polymerization catalyst system comprising said catalyst composition, a cocatalyst and optionally an external electron donor. Furthermore, the present invention relates to a polyolefin obtainable by the process according to the present invention and to the use of the compound of formula (I) as in internal electron donor in catalysts for polymerization of olefins.