Abstract:
A robotic ball device having a center point and an axis of rotation passing through the center point around which the robotic ball device rotates during motion in a forward linear direction includes a housing and a defined pathway located on an inner face of the housing that forms a closed loop around the axis of rotation. A rolling member is contained in the housing and movably disposed on the defined pathway. An actuator is coupled to the rolling member for actuating rotation of the rolling member. A weighted component is operationally coupled to the rolling member, and the weighted component is sufficiently heavy to maintain the rolling member, during a motion in the forward linear direction, at a substantially constant angular position in a forward vertical plane, which dissects the rolling member, relative to an origin in a moving frame of reference that moves with the robotic ball device.
Abstract:
A fiber optic dosimeter probe for sensing radiation dose including an optical fiber having a free end and a sensitive end, a window having a sensitive side and a rear side; a radiation sensitive layer between the sensitive end of the optical fiber and a sensitive side of the window, the radiation sensitive layer being made of a material having an optical property that changes with absorbed radiation dose, an amount of the material corresponding to a predetermined sensitivity to radiation; wherein the window and the optical fiber have a near water equivalent interaction with radiation and are MR compatible.
Abstract:
An end-of-service indicator for use with a respirator cartridge, the end-of-service indicator having an optical waveguide having two extremities, one of the extremities being connected to a light source, the other of the extremities being connected to a detector which measures the intensity of light guided and transmitted by the fiber. An alarm is connected to the detector and is triggered when the intensity of light measured by the detector is below a predetermined level. An important aspect of the end-of-service indicator is that at least a portion of the optical fiber is porous. In use, the end-of-service indicator is placed inside a respirator cartridge having a gas/vapor sorbent, so that when the respirator cartridge is used in a toxic environment, the gas/vapor sorbent and the porous glass gradually become saturated. This porous glass will absorb the gas/vapor in the same fashion as the sorbent used in the respirator cartridge, thereby lowering the guiding and transmission properties of the optical fiber which loses the necessary conditions to guide light.
Abstract:
An optical fiber polarimetric chemical sensor for capillary gas chromatography in which a sample fluid is injected into a capillary in the form of a periodic pulse train. Each individual pulse defines a moving polarization coupling zone that affects the polarization state of the light propagating in a birefringent optical waveguide that includes the capillary. The spacing between consecutive coupling zones can be made equal to the polarization beat length of the waveguide when the injection frequency of the pulses is properly selected, thus defining a resonance condition for a given analyte. The contributions of the successive coupling zones present along the length of the capillary then add up in phase, thus resulting in a detected optical signal having an enhanced amplitude peak at the injection frequency. In this manner, the sensitivity can be enhanced.
Abstract:
There is provided an evanescent wave multimode optical waveguide sensitive to a chemical species or to a physical parameter. The optical waveguide comprises a core and a cladding having a cladding refractive index lower than that of the core for guiding light to be propagated in the optical waveguide. The cladding defines with the core an optical waveguide providing mode coupling. A chemical indicator is provided in the cladding for causing a variation of the optical absorption of the cladding as a function of the chemical species or the physical parameter. The cladding is interrogated by the evanescent wave of the propagated light. The mode coupling causes unabsorbed light power to be redistributed among the multiple modes while light propagates along the optical waveguide.
Abstract:
The robot ball comprises an encapsulating shell, a drive system and a steering system. The shell has an axis of rotation and an outer annular tread surface centered on the axis of rotation. The drive system is encapsulated in the shell and comprises a first motorized mechanism and a counterweight. The first motorized mechanism has a stator portion and a rotor portion centered on the axis of rotation and connected to the shell. The counterweight is connected to the stator portion and is spaced apart from the axis of rotation whereby, due to inertia of the counterweight, rotation of this rotor portion rotates the shell to roll the tread surface on the ground. The steering system comprises a second motorized mechanism through which the counterweight is connected to the stator portion. This second motorized mechanism includes a pivot assembly having a pivot axis transversal to the axis of rotation. Therefore, activation of the second motorized mechanism rotates the counterweight about the pivot axis, tilts the axis of rotation, displaces the center of gravity of the robot ball, and thereby changes the trajectory of the robot ball. An inclinometer is mounted on the stator portion to measure an inclination of the stator portion about the axis of rotation, and a controller regulates the speed of rotation of the rotor portion in relation to the measured inclination. The robot ball further includes a second inclinometer so mounted on the platform as to measure an inclination about the pivot axis. The controller then controls the electric servomotor in relation to the measured platform inclination about the pivot axis.
Abstract:
The invention relates to a process for the processing of nuclear targets and/or fuels based on metallic aluminium by dissolving with the aid of aqueous tetramethylammonium hydroxide (TMAOH) solutions. Dissolving can consist of a total dissolving in a single stage of the core and the can of the nuclear fuel by TMAOH or a decanning of the can by TMAOH, followed by a nitric dissolving of the core. The use of TMAOH eliminates the disadvantages associated with dissolving in a concentrated nitric or sodium medium and decanning with soda and in particular permits the easy vitrification of the effluents produced by the process.
Abstract:
A fiber optic dosimeter probe for sensing radiation dose including an optical fiber having a free end and a sensitive end, a window having a sensitive side and a rear side; a radiation sensitive layer between the sensitive end of the optical fiber and a sensitive side of the window, the radiation sensitive layer being made of a material having an optical property that changes with absorbed radiation dose, an amount of the material corresponding to a predetermined sensitivity to radiation; wherein the window and the optical fiber have a near water equivalent interaction with radiation and are MR compatible.
Abstract:
There is provided an evanescent wave multimode optical waveguide sensitive to a chemical species or to a physical parameter. The optical waveguide comprises a core and a cladding having a cladding refractive index lower than that of the core for guiding light to be propagated in the optical waveguide. The cladding defines with the core an optical waveguide providing mode coupling. A chemical indicator is provided in the cladding for causing a variation of the optical absorption of the cladding as a function of the chemical species or the physical parameter. The cladding is interrogated by the evanescent wave of the propagated light. The mode coupling causes unabsorbed light power to be redistributed among the multiple modes while light propagates along the optical waveguide.
Abstract:
The invention relates to distributed optical waveguide polarimetric chemical analysis. Real-time monitoring of a separation process of a fluid in a capillary column is provided using a distributed sensor comprising a birefringent optical waveguide placed between two polarizers. The optical waveguide has a longitudinal channel defined by a channel surface in its cladding and adapted to receive the fluid such that it travels in said longitudinal channel. The longitudinal channel is positioned with respect to the core such that channel surface absorption of the fluid traveling in the longitudinal channel causes a local variation of the orientation of the polarization axes of the optical waveguide. The proposed embodiment can be used for monitoring the velocity of the separated components along the channel.