Abstract:
A circuit includes a controller configured to determine a calibration state of a circuit, to determine an active mode state of the circuit, and to select a type of calibration operation based on the calibration state. The controller is configured to control timing of the selected type of calibration operation in response to determining the calibration state to correspond to a time when the circuit is not active.
Abstract:
A circuit includes a controller configured to determine a calibration state of a circuit, to determine an active mode state of the circuit, and to select a type of calibration operation based on the calibration state. The controller is configured to control timing of the selected type of calibration operation in response to determining the calibration state to correspond to a time when the circuit is not active.
Abstract:
A method includes estimating a temperature change to an integrated circuit, which is associated with a pending transmission from the integrated circuit. The method includes, based on the estimated temperature change, regulating at least one parameter that is associated with the pending transmission to maintain a temperature of the integrated circuit below a temperature threshold.
Abstract:
A method includes estimating a temperature change to an integrated circuit, which is associated with a pending transmission from the integrated circuit. The method includes, based on the estimated temperature change, regulating at least one parameter that is associated with the pending transmission to maintain a temperature of the integrated circuit below a temperature threshold
Abstract:
A circuit includes a temperature sensor configured to determine a circuit temperature and includes an analog circuit including one or more controllable circuit elements. The analog circuit includes at least one adjustable parameter. The circuit further includes a controller coupled to the temperature sensor and configured to select a threshold temperature. The controller is configured to control the analog circuit in response to the circuit temperature to selectively adjust at least one adjustable parameter of the analog circuit when the temperature exceeds the selected threshold temperature.
Abstract:
A radio frequency (RF) receiver comprises an analog receiver, a digital signal processor, a clock synthesizer, and a microcontroller. The analog receiver has an input for receiving an RF input signal, and an output for providing a digital intermediate frequency (IF) signal. The digital signal processor has a first input for receiving the digital IF signal, a second input for receiving a clock signal, and a signal output for providing an IF output signal. The clock synthesizer has an input for receiving a clock control signal, and an output for providing the clock signal. The a microcontroller has an input for receiving a channel selection signal, wherein the microcontroller provides the clock control signal to control a frequency of the clock signal dynamically in response to a channel selection input to place a sub-harmonic at a tolerable frequency of a selected channel.