Abstract:
A clock generator includes an interpolative divider including a phase interpolator and a multi-modulus divider. The interpolative divider is configured to generate an output clock signal based on a clock signal, a control code, and a phase interpolator calibration signal. The clock generator includes a calibration circuit configured to generate the phase interpolator calibration signal based on the clock signal, the output clock signal and a phase interpolator code. The calibration circuit includes a phase-locked loop configured to generate a digital phase error signal based on a reference timestamp signal and a timestamp signal based on the clock signal and the output clock signal. The calibration circuit includes an adaptive loop configured to generate the phase interpolator calibration signal based on the digital phase error signal.
Abstract:
A spur cancellation circuit uses low cost multipliers in a correlation circuit. Each low cost multiplier multiplies a value of a sense node by a representation of a sinusoid and supplies a multiplication result. A compare circuit compares the sinusoid to one or more threshold values and supplies a compare indication. A multiplexer selects between two or more inputs including a positive value of the sense node and a negative value of the sense node, based on the compare result. A single threshold at zero converts the sinusoid to a square wave and the multiplexer supplies either the positive value or the negative value, which is equivalent to multiplying the value at the sense node by 1 or −1 depending on the sign of the sinusoid. Two thresholds may be used to represent the sinusoid with three values, the positive value, the negative value, or zero.
Abstract:
A spur measurement system uses a first device with a spur cancellation circuit that cancel spurs responsive to a frequency control word identifying a spurious tone of interest. A device under test generates a clock signal and supplies the clock signal to the first device through an optional divider. The spur cancellation circuit in the first device generates sine and cosine weights at the spurious tone of interest as part of the spur cancellation process. A first magnitude of the spurious tone in a phase-locked loop in the first device is determined according to the sine and cosine weights and a second magnitude of the spurious tone in the clock signal is determined by the first magnitude divided by gains associated with the first device.
Abstract:
A spur measurement system uses a first device with a spur cancellation circuit that cancel spurs responsive to a frequency control word identifying a spurious tone of interest. A device under test generates a clock signal and supplies the clock signal to the first device through an optional divider. The spur cancellation circuit in the first device generates sine and cosine weights at the spurious tone of interest as part of the spur cancellation process. A first magnitude of the spurious tone in a phase-locked loop in the first device is determined according to the sine and cosine weights and a second magnitude of the spurious tone in the clock signal is determined by the first magnitude divided by gains associated with the first device.
Abstract:
A phase and frequency detector receives a reference clock signal with a period error and receives a feedback clock signal from a feedback divider. The feedback divider circuit divides a clock signal from a voltage controlled oscillator. The feedback divider divides by different divide values during odd and even cycles of the reference clock signal to cause the feedback clock signal to have a period error that substantially matches the period error of the reference clock signal. The divider values supplied to the feedback divider are determined, at least in part, by the period error of the reference clock signal.
Abstract:
An amplifier topology achieves enhances DC gain to improve linearity while maintaining a good signal to noise ratio. The amplifier includes an amplifier output stage that supplies an amplifier output signal. The amplifier also includes a sense amplifier that augments the output stage. The sense amplifier is coupled to the amplifier input to control current through the output stage in order to achieve reduced voltage variation at the amplifier input as a function of the amplifier output signal voltage as compared to a basic common source amplifier and thereby enhances DC gain of the amplifier.
Abstract:
A phase and frequency detector receives a reference clock signal with a period error and receives a feedback clock signal from a feedback divider. The feedback divider circuit divides a clock signal from a voltage controlled oscillator. The feedback divider divides by different divide values during odd and even cycles of the reference clock signal to cause the feedback clock signal to have a period error that substantially matches the period error of the reference clock signal. The divider values supplied to the feedback divider are determined, at least in part, by the period error of the reference clock signal.
Abstract:
A spur cancellation circuit uses low cost multipliers in a correlation circuit. Each low cost multiplier multiplies a value of a sense node by a representation of a sinusoid and supplies a multiplication result. A compare circuit compares the sinusoid to one or more threshold values and supplies a compare indication. A multiplexer selects between two or more inputs including a positive value of the sense node and a negative value of the sense node, based on the compare result. A single threshold at zero converts the sinusoid to a square wave and the multiplexer supplies either the positive value or the negative value, which is equivalent to multiplying the value at the sense node by 1 or −1 depending on the sign of the sinusoid. Two thresholds may be used to represent the sinusoid with three values, the positive value, the negative value, or zero.
Abstract:
Two sets of information (phase and cycle count) that are created asynchronously in a voltage controlled oscillator based analog-to-digital converter. A third set of information is created that is a delayed cycle count. The three sets of information are used to determine the proper alignment of the phase and the cycle count.
Abstract:
A spur target frequency is periodically determined to cancel a spur using a spur cancellation circuit in a first phase-locked loop (PLL) in a system with at least a second PLL that is in lock with the first PLL. The spur target frequency is periodically determined utilizing divide ratios of the first PLL and the second PLL to determine the updated spur target frequency. As one or more of the divide ratios change, the spur frequency changes and the spur target frequency is updated to reflect the change.