Abstract:
A container assembly includes a container body having a side wall encircling an axis, and a metal end for attachment to an upper edge of the side wall via heat-sealing. The outer peripheral region is shaped prior to application to the container body such that an annular channel is defined between an inner chuck wall and an outer chuck wall of the metal end. The metal end is pushed straight onto the side wall such that the upper edge of the side wall is received into the channel. The surfaces of the side wall and the opposing surfaces of the chuck walls have heat-sealable material thereon. The metal end is heated to melt and fuse the heat-sealable layers, thereby sealing the metal end onto the side wall. The metal end is shaped such that the free edge of the outer chuck wall is not exposed.
Abstract:
The invention is drawn to a container comprising a bottom wall and at least one sidewall connected to the bottom wall which form a container interior. The sidewall terminates in a rolled edge opposite the bottom wall and has an inner and an outer surface. A flexible bag having an open end is disposed within the interior of the container. A slide ring comprises a circumferential portion which is substantially vertical or vertical and a finger extending therefrom and is affixed to the open end of the bag and disposed adjacent the outer surface of the sidewall, below the rolled edge. The finger of the slide ring is angled inwardly toward the sidewall and frictionally engages the sidewall. Vertical adjustment of the slide ring vertically adjusts the bag within the interior of the container.
Abstract:
A retortable container is formed with an opening formed defined by a projecting rim. The rim includes an external surface and securing structure formed thereon. A flexible membrane is sealed to the rim and closes the opening. A closure is provided having a molded plastic tubular ring and a separately formed molded plastic disk. The tubular ring includes an overlapping flange at a top and directed inwardly towards an inwardly positioned open area. The skirt includes an engagement structure for securing the closure to the external surface of the rim. The disk is separately attached to the ring within the open area after the retort process is applied to the sealed bottle.
Abstract:
The invention is drawn to a container comprising a bottom wall and at least one sidewall extending upwardly from the bottom wall. The sidewall terminates in an edge and has an inner and an outer surface. The bottom wall and the at least one sidewall form a container interior. A flexible bag having an open end is disposed within the interior of the container and over the top edge of the container. A slide ring extends at least partially circumferentially about the outer surface of the sidewall and is affixed to the open end of the bag and frictionally engaged with the outer surface of the sidewall.
Abstract:
A method is described for making a retort container having one or two metal ends. A heat-sealable material is present on one or both of the container side wall and the/each metal end. The/each metal end is seamed onto the container body, and the resulting container assembly is conveyed on a conveyor adjacent to an induction sealing head and then adjacent to a cooling device. A pressure belt engages the upper end of the container assembly to keep the metal end from coming off the container body during the induction heating and cooling processes.
Abstract:
A container includes a metal end applied and sealed to an all-thermoplastic container body by a crimp-seaming or double-seaming operation. The metal end has an outer curl joined to a chuck wall that extends down from the curl. One or both of the inner surface of the container side wall and the outer surface of the chuck wall has/have a heat-sealable material thereon. The metal end is crimp-seamed or double-seamed to the container body and the heat-sealable material(s) are heated to soften or melt such that the interface between the chuck wall and the side wall is fused. The interface is oriented along a direction relative to internal pressure exerted on the metal end such that stress on the interface caused by the internal pressure is predominantly shear stress.
Abstract:
A container assembly includes a container body having a side wall encircling an axis, and a metal end for attachment to an upper edge of the side wall via heat-sealing. The outer peripheral region is shaped prior to application to the container body such that an annular channel is defined between an inner chuck wall and an outer chuck wall of the metal end. The metal end is pushed straight onto the side wall such that the upper edge of the side wall is received into the channel The surfaces of the side wall and the opposing surfaces of the chuck walls have heat-sealable material thereon. The metal end is heated to melt and fuse the heat-sealable layers, thereby sealing the metal end onto the side wall. The metal end is shaped such that the free edge of the outer chuck wall is not exposed.
Abstract:
A container includes a metal end applied and sealed to an all-thermoplastic container body by a crimp-seaming or double-seaming operation. The metal end has an outer curl joined to a chuck wall that extends down from the curl. One or both of the inner surface of the container side wall and the outer surface of the chuck wall has/have a heat-sealable material thereon. The metal end is crimp-seamed or double-seamed to the container body and the heat-sealable material(s) are heated to soften or melt such that the interface between the chuck wall and the side wall is fused. The interface is oriented along a direction relative to internal pressure exerted on the metal end such that stress on the interface caused by the internal pressure is predominantly shear stress.
Abstract:
A container includes a metal end applied and sealed to an all-thermoplastic container body by a crimp-seaming or double-seaming operation. The metal end has an outer curl joined to a chuck wall that extends down from the curl. One or both of the inner surface of the container side wall and the outer surface of the chuck wall has/have a heat-sealable material thereon. The metal end is crimp-seamed or double-seamed to the container body and the heat-sealable material(s) are heated to soften or melt such that the interface between the chuck wall and the side wall is fused. The interface is oriented along a direction relative to internal pressure exerted on the metal end such that stress on the interface caused by the internal pressure is predominantly shear stress.
Abstract:
A system for assembling a container and closure comprising an expanding collet which has a plurality of pivoting collet segments, each configured to simultaneously pivot radially outward about a pivot point and comprising. The collet comprises a lip that is engagable with the rim of the open end of the container and an angled tip positioned radially inward from the lip and shaped to press a countersink portion of the closure against an interior wall of the container as the collet segments pivot radially outward. As the container and the chuck are brought together, the rim engages with the lips of the collet segments and causes the angled tips of the collet segments to pivot outward toward the interior wall of the container, thereby pushing the countersink portion of the closure against the interior wall of the container.