Abstract:
An image sensing device that can adjust parameters of an image before sending it to a processor for reducing computing power and/or storage requirement is disclosed. The image sensing device includes an array of sensing pixels; an output amplifier; an analog-to-digital converter; a first set of registers and a second set of registers; an activation circuit; and a profiling logic. The profiling logic conducts statistical analysis on output data and adjusts parameters stored in the first set of registers until results of the statistical analysis reaches a target standard, wherein the adjusted parameters are used to generate an output image by each sensing pixel of the array of sensing pixels once the target standard is reached and a notification signal is sent to an external device for notifying the failure of parameter adjustment if the target standard fails to be reached within a predetermined times of adjustment.
Abstract:
A method for mounting a chip on a printed circuit board (PCB) is disclosed. The method includes the steps of: providing a chip having a plurality of bonding pads and a PCB having a recess portion and a plurality of connectors; gluing the recess portion; placing the chip into the recess portion; and forming circuit patterns linking associated bonding pad and connector. A bottom of the recess portion is substantially flat and a shape of the recess portion is similar to that of the chip but large enough so that the chip can be fixed in the recess portion after being glued.
Abstract:
A silicon wafer having colored top side is disclosed in the present invention. The silicon wafer includes: a wafer; a first semi-conductor layer, formed on at least a portion of a top side of the wafer, having periodical structures to form a grating pattern, and a second semi-conductor layer, formed on the first semi-conductor layer with a bottom side substantially fully contacted with the periodical structures. The first semi-conductor layer and the second semi-conductor layer form a photonic crystal layer and work to reflect a predetermined wavelength range of incident visible light beams. The present invention provides a silicon wafer which can reflect specified color(s) from the surface facing external light beams. Therefore, dies from cutting the silicon wafer with functions to interact with external environment rather than packaged can have advantages to show some specified logo or trademark.
Abstract:
A capacitive image sensor and a method for running the capacitive image sensor are disclosed. The capacitive image sensor includes a number of capacitive sensing elements, forming an array, each capacitive sensing element for transforming a distance between a portion of a surface of an approaching finger and a top surface thereof into an output voltage, wherein a value of the output voltage is changed by a driving signal exerted on the finger; an A/D converter, for converting the output voltage into a number and outputting the number; and a signal source, for providing the driving signal to the finger.
Abstract:
A remote control for a smart TV or a set-top box is disclosed. The remote control includes a capacitive fingerprint sensor, a processor and a wireless transmitter. The present invention takes advantages of the capacitive fingerprint sensor so that every user's personal data and corresponding setting for the smart TV or set-top box are available. Channel (or web-site) content rating can be achieved. Purchasing over TV can be safer than ever.
Abstract:
A method for forming a stacked metal contact in electrical communication with aluminum wiring in a semiconductor wafer of an integrated circuit is disclosed. The method includes the steps of: forming at least one passivation layer on a surface of the semiconductor wafer of the integrated circuit, where an aluminum wiring is embedded; forming a patterned terminal via opening through the passivation layer to expose the aluminum wiring; removing a portion of the aluminum wiring from the patterned terminal via opening by chemical etching and forming a thin zinc film on an etched surface at the same time; forming a nickel film stacked on the zinc film; and; and forming a metal stack in the patterned terminal via opening and/or at least a portion of the passivation layer by chemical plating or metal plating.
Abstract:
An image sensing device that can adjust parameters of an image before sending it to a processor for reducing computing power and/or storage requirement is disclosed. The image sensing device includes an array of sensing pixels; an output amplifier; an analog-to-digital converter; a first set of registers and a second set of registers; an activation circuit; and a profiling logic. The profiling logic conducts statistical analysis on output data and adjusts parameters stored in the first set of registers until results of the statistical analysis reaches a target standard, wherein the adjusted parameters are used to generate an output image by each sensing pixel of the array of sensing pixels once the target standard is reached and a notification signal is sent to an external device for notifying the failure of parameter adjustment if the target standard fails to be reached within a predetermined times of adjustment.
Abstract:
A printed circuit board assembly (PCBA) and a method to assemble the PCBA are disclosed. The PCBA includes a printed circuit board (PCB), an image sensing chip and a protection layer. The PCB includes a first insulation layer, a second insulation layer, a first electrically conductive layer, a second electrically conductive layer, and a third electrically conductive layer. The image sensing chip has a number of bonding pads with a sensor portion facing down through the second opening. The PCBA can function as an image sensing module and make the module have the thinnest thickness.
Abstract:
A method for enhancing surface characteristics of a fingerprint sensor and a protective structure made according to the method are disclosed. The method includes the steps of: providing a fingerprint sensor having a number of detecting elements beneath a top surface of the fingerprint sensor, the detecting element is used to detect changes of capacitance over a portion of a finger; forming a metal mesh layer over the top surface of the fingerprint sensor, wherein metal lines of the metal mesh layer are formed periodically and each of them is located between two adjacent detecting elements; forming a passivation layer on the metal mesh layer to shape a concave-convex top surface; and filling concave portions of the passivation layer with a Diamond-Like Carbon (DLC) material. A convex portion of the passivation layer is substantially above the metal line of the metal mesh layer.
Abstract:
An electronic device having a structure that electrically connects the contactor to an electronic device during a testing process is disclosed. The contactor includes a holder for accommodating the electronic device during the testing process; a flexible circuit, having a first set of contacts electrically connected to the corresponding electrode terminals of the electronic device, and a second set of contacts electrically connected to a control unit that sends test signals during the test process; an elastomer, for adjusting the pressure between the first set of contacts of the flexible circuit and the corresponding electrode terminals of the electronic device while being pressed together; and an alignment tool, for aligning the first set of contacts with the corresponding electrode terminals of the electronic device. The electrode terminals of the electronic device are located on the same surface of the electronic device and the flexible circuit is detachable from the contactor.