Abstract:
Systems, devices, and methods for beam combining within laser projectors are described. A laser projector includes first, second, and third laser diodes to generate red, green, and blue laser light respectively, a controllable scan mirror, and a heterogeneous beam splitter system. The red, green, and blue laser light have distinct maximum powers. The heterogeneous beam splitter system splits at least one of the red, green, and blue laser light and combines respective first portions of all three into an aggregate beam. Second portions of laser light are excluded from the aggregate beam. At the maximum power of each laser light the aggregate beam is white as defined by a target white point. The heterogeneous beam splitter system directs the aggregate beam towards the controllable scan mirror which scans the beam onto a projection surface. Decreasing the power of the laser light post-generation provides a larger range of aggregate beam colors.
Abstract:
Systems, devices, and methods for beam combining are described. A monolithic beam combiner includes a solid volume of optically transparent material having a planar input surface, an output surface, a planar reflector physically coupled to the solid volume, and at least a first planar dichroic reflector within the solid volume. Multiple light sources input light into the solid volume through the planar input surface such that each light beam from a respective source is initially incident on one of the planar reflector and the at least a first planar dichroic reflector. The light is reflected by and transmitted through the reflectors and an aggregate beam is created. Because the reflectors are within an optically transparent material the beam combiner can be made more compact than a conventional beam combiner. This monolithic beam combiner is particularly well suited for use laser projectors and in wearable heads-up displays that employ laser projectors.
Abstract:
Systems, devices, and methods for eyebox expansion in wearable heads-up displays (WHUD) are described. A WHUD includes a support structure, a scanning laser projector (SLP), a split mirror, an optical splitter, and a holographic combiner. When the WHUD is worn on the head of a user the holographic combiner is positioned in a field of view of the user. The SLP scans light signals onto the split mirror which reflects the light signals onto the optical splitter. The optical splitter redirects the light signals towards the holographic combiner such that subsets of the light signals originate from spatially-separated virtual positions. The holographic combiner redirects the light to the eye resulting in spatially-separated exit pupils. The spatial separation of the exit pupils results in an expanded eyebox. The indirect path of light from SLP to optical splitter enables a smaller and therefore more aesthetically desirable design for the WHUD.
Abstract:
Systems, devices, and methods for eyebox expansion by exit pupil replication in wearable heads-up displays (“WHUDs”) are described. A WHUD includes a scanning laser projector (“SLP”), a holographic combiner, and an optical splitter positioned in the optical path therebetween. The optical splitter receives light signals generated by the SLP and separates the light signals into N sub-ranges based on the point of incidence of each light signal at the optical splitter. The optical splitter redirects the light signals corresponding to respective ones of the N sub-ranges towards the holographic combiner effectively from respective ones of N spatially-separated virtual positions for the SLP. The holographic combiner converges the light signals to respective ones of N spatially-separated exit pupils at the eye of the user. In this way, multiple instances of the exit pupil are distributed over the area of the eye and the eyebox of the WHUD is expanded.
Abstract:
Systems, devices, and methods for beam combining within laser projectors are described. A laser projector includes first, second, and third laser diodes to generate red, green, and blue laser light respectively, a controllable scan mirror, and a heterogeneous beam splitter system. The red, green, and blue laser light have distinct maximum powers. The heterogeneous beam splitter system splits at least one of the red, green, and blue laser light and combines respective first portions of all three into an aggregate beam. Second portions of laser light are excluded from the aggregate beam. At the maximum power of each laser light the aggregate beam is white as defined by a target white point. The heterogeneous beam splitter system directs the aggregate beam towards the controllable scan mirror which scans the beam onto a projection surface. Decreasing the power of the laser light post-generation provides a larger range of aggregate beam colors.
Abstract:
Systems, devices, and methods for eyebox expansion by exit pupil replication in wearable heads-up displays (“WHUDs”) are described. A WHUD includes a scanning laser projector (“SLP”), a holographic combiner, and an optical splitter positioned in the optical path therebetween. The optical splitter receives light signals generated by the SLP and separates the light signals into N sub-ranges based on the point of incidence of each light signal at the optical splitter. The optical splitter redirects the light signals corresponding to respective ones of the N sub-ranges towards the holographic combiner effectively from respective ones of N spatially-separated virtual positions for the SLP. The holographic combiner converges the light signals to respective ones of N spatially-separated exit pupils at the eye of the user. In this way, multiple instances of the exit pupil are distributed over the area of the eye and the eyebox of the WHUD is expanded.
Abstract:
Systems, devices, and methods for reducing bulk and balancing weight in wearable heads-up displays are described. Bulk can be reduced in a wearable heads-up display by positioning a battery in a first arm of the wearable heads-up display and other electronics in a second arm of the wearable heads-up display, thus reducing the amount of extraneous housing that would otherwise be required to house multiple batteries or electronic components in both arms. Weight of a wearable heads-up display can be balanced by selecting appropriately sized and weight electronics in the first arm, and by adjusting size and therefore weight of the battery in the second arm. Densely filling the first arm with electronics can result in the first arm and the second arm having similar weight.
Abstract:
Systems, devices, and methods for eyebox expansion in wearable heads-up displays (WHUD) are described. A WHUD includes a support structure, a scanning laser projector (SLP), a split mirror, an optical splitter, and a holographic combiner. When the WHUD is worn on the head of a user the holographic combiner is positioned in a field of view of the user. The SLP scans light signals onto the split mirror which reflects the light signals onto the optical splitter. The optical splitter redirects the light signals towards the holographic combiner such that subsets of the light signals originate from spatially-separated virtual positions. The holographic combiner redirects the light to the eye resulting in spatially-separated exit pupils. The spatial separation of the exit pupils results in an expanded eyebox. The indirect path of light from SLP to optical splitter enables a smaller and therefore more aesthetically desirable design for the WHUD.
Abstract:
Systems, devices, and methods for eyebox expansion by exit pupil replication in wearable heads-up displays (“WHUDs”) are described. A WHUD includes a scanning laser projector (“SLP”), a holographic combiner, and an optical splitter positioned in the optical path therebetween. The optical splitter receives light signals generated by the SLP and separates the light signals into N sub-ranges based on the point of incidence of each light signal at the optical splitter. The optical splitter redirects the light signals corresponding to respective ones of the N sub-ranges towards the holographic combiner effectively from respective ones of N spatially-separated virtual positions for the SLP. The holographic combiner converges the light signals to respective ones of N spatially-separated exit pupils at the eye of the user. In this way, multiple instances of the exit pupil are distributed over the area of the eye and the eyebox of the WHUD is expanded.
Abstract:
Systems, devices, and methods for optical splitters are described. An optical splitter includes a transparent polygonal structure having an input side to receive light from a light source and an output side that is segmented into multiple facets. Each facet is engineered to provide a respective planar surface that is oriented at a different angle in each of at least two spatial dimensions relative to the other facets in order to refract and route a respective portion of the light along a respective set of optical paths. The input side may be faceted as well to further refine the optical paths. A particular application of the polygonal structure in an optical splitter providing eyebox expansion by exit pupil replication in a scanning laser-based wearable heads-up display is described in detail.