Abstract:
The present disclosure relates to nanocomposites of CuO/Cu2O and continuous flow solar reactors. The nanocomposites can be utilized as a photocatalyst and can be incorporated into photoelectrochemical devices. The described devices, systems, and methods can be used for converting CO2 into one or more alcohols and other small organics with the use of solar energy and electricity. Other embodiments are described.
Abstract:
The present disclosure relates to nanocomposites of CuO/Cu2O and continuous flow solar reactors. The nanocomposites can be utilized as a photocatalyst and can be incorporated into photoelectrochemical devices. The described devices, systems, and methods can be used for converting CO2 into one or more alcohols and other small organics with the use of solar energy and electricity. Other embodiments are described.
Abstract:
The present disclosure relates to nanocomposites of CuO/Cu2O and continuous flow solar reactors. The nanocomposites can be utilized as a photocatalyst and can be incorporated into photoelectrochemical devices. The described devices, systems, and methods can be used for converting CO2 into one or more alcohols and other small organics with the use of solar energy and electricity. Other embodiments are described.
Abstract:
The nanocomposites that include CuO/Cu2O are described. The nanocomposites can utilized as a photocatalyst and can be incorporated into photoelectrochemical devices. The described devices, systems, and methods can be used for converting CO2 into one or more alcohols with the use of solar energy and electricity.
Abstract:
The present invention is directed at an improved process for generating heavier hydrocarbons from carbon dioxide and/or carbon monoxide and water using tandem photochemical-thermochemical catalysis in a single reactor. Catalysts of the present disclosure can comprise photoactive material and deposits of conductive material interspersed on the surface thereof. The conductive material can comprise Fischer-Tropsch type catalysts.