Abstract:
Electrically conductive coating materials, electrically conductive coating systems, and methods including the same are disclosed herein. The electrically conductive coating systems include an electrically conductive base layer, a dielectric layer, and a plurality of electrically conductive elements that are embedded within the dielectric layer. The electrically conductive coating materials include a liquid dielectric and a plurality of electrically conductive elements that are suspended within the liquid dielectric. The methods include applying an electrically conductive coating material to an electrically conductive base layer and curing the electrically conductive coating material to define the electrically conductive coating system. The electrically conductive elements are defined by an elongate body that has a nonlinear conformation and is shaped to extend across at least 80% of an average thickness of the dielectric layer and/or to project from the electrically conductive base layer at least 80% of the average thickness of the dielectric layer.
Abstract:
A blade positioning system and method are provided to dynamically measure blade position during flight of a rotorcraft. In the context of a method, a blade of the rotorcraft is repeatedly illuminated by a light source during flight of the rotorcraft while the blade is rotating. The method also includes detecting radiation scattered from the blade in response to illumination of the blade. The method further includes determining at least one of a blade pitch angle, a blade flap angle, a blade leading position or a blade lagging position based upon the radiation that is scattered from the blade and detected. A rotorcraft is also provided that includes a chip-scale light detection and ranging (LIDAR) sensor configured to illuminate the plurality of blades while the blades are rotating in order to permit blade position to be measured or to illuminate terrain beneath the rotorcraft in order to provide an altitude measurement.
Abstract:
Electrically conductive coating materials, electrically conductive coating systems, and methods including the same are disclosed herein. The electrically conductive coating systems include an electrically conductive base layer, a dielectric layer, and a plurality of electrically conductive elements that are embedded within the dielectric layer. The electrically conductive coating materials include a liquid dielectric and a plurality of electrically conductive elements that are suspended within the liquid dielectric. The methods include applying an electrically conductive coating material to an electrically conductive base layer and curing the electrically conductive coating material to define the electrically conductive coating system. The electrically conductive elements are defined by an elongate body that has a nonlinear conformation and is shaped to extend across at least 80% of an average thickness of the dielectric layer and/or to project from the electrically conductive base layer at least 80% of the average thickness of the dielectric layer.