Abstract:
A system and a method include at least one control unit that determines a de-icing time for an aircraft within a de-icing area of an airport, predicts a de-icing time for an aircraft within a de-icing area of an airport, schedules de-icing times for a plurality of aircraft within a de-icing area of an airport, and/or predicts demand for future de-icing operations of aircraft within a de-icing area of an airport.
Abstract:
A flight plan analysis system is configured to determine a flight plan decision regarding a proposed flight plan for an unmanned aerial vehicle (UAV). The flight plan analysis system includes a flight plan database that stores risk factor data, and a flight plan analysis unit communicatively coupled to the flight plan database. The flight plan analysis unit receives a proposed flight plan for the UAV and determines the flight plan decision based on an analysis of the proposed flight plan and the risk factor data.
Abstract:
An instrument panel is identified based on a captured image such as a photograph. A target configuration of the instrument panel is compared with a current configuration of the instrument panel based on the image data. An indication of differences between the target configuration and the current configuration is provided.
Abstract:
A system and a method include at least one control unit that determines a de-icing time for an aircraft within a de-icing area of an airport, predicts a de-icing time for an aircraft within a de-icing area of an airport, schedules de-icing times for a plurality of aircraft within a de-icing area of an airport, and/or predicts demand for future de-icing operations of aircraft within a de-icing area of an airport.
Abstract:
The present disclosure provides for informed de-icing by identifying a travel time range for an aircraft from a de-icing station to a runway; identifying a holdover window based on predicted weather conditions during the travel time range; estimating a takeoff time for the aircraft based on a takeoff queue for the runway and the travel time range; and in response to the holdover window expiring before the estimated takeoff time, delaying the aircraft from de-icing. In some aspects, informed de-icing includes, in response to identifying an aircraft scheduled for de-icing within a caution threshold of a scheduled takeoff time and to determining that a push time cannot be delayed: evaluating an effect of repeating a de-icing operation for the aircraft on flight operations; and in response to the effect exceeding an impact threshold: rescheduling the de-icing operation for the aircraft based on a new takeoff time.
Abstract:
A wearable electronic display system detects aircraft flight related conditions, compares the detected flight related conditions with rules or procedures, retrieves flight condition information relating to phase of flight, and displays small amounts of contextually relevant flight condition information on a display screen.
Abstract:
A flight range-restricting system is configured to control a flight range of an unmanned aerial vehicle (UAV). The flight range-restricting system includes a database including a UAV capabilities storage area that stores UAV capabilities data indicative of technical specifications of the UAV, and a restricted airspace storage area that stores restricted airspace data indicative of a restricted airspace. A range-restricting control unit is communicatively coupled to the database. The range-restricting control unit controls the flight range of the UAV based on a current location of the UAV, the UAV capabilities data, and the restricted airspace data.
Abstract:
A runway exiting system is configured to determine a suitable exit off of a runway for an aircraft. The runway exiting system includes a housing, and one or more processors within the housing that are configured to determine a current position of the aircraft on the runway, determine a current rate of deceleration of the aircraft on the runway, and determine the suitable exit off of the runway for the aircraft based, at least in part, on the current position of the aircraft on the runway and the current rate of deceleration of the aircraft on the runway.
Abstract:
A method and apparatus for identifying training for a flight crew member. The flight crew member is identified. Information for a flight to which the flight crew member is assigned is identified. Training for the flight crew member is identified using the flight information.
Abstract:
A method and apparatus for managing a touch screen system. Data generated by an acceleration detector about acceleration of the touch screen system is received. The acceleration detector is located within the touch screen system. An action is initiated by an input manager when the acceleration of the touch screen system reduces usability of the touch screen system.