Abstract:
An instrument panel is identified based on a captured image such as a photograph. A target configuration of the instrument panel is compared with a current configuration of the instrument panel based on the image data. An indication of differences between the target configuration and the current configuration is provided.
Abstract:
A system for landing an unmanned aerial vehicle (UAV) at a destination includes a landing coordination control unit that is configured to switch the UAV from a normal operating mode to a landing mode in response to the UAV entering a regulated airspace in relation to the destination. The normal operating mode includes normal instructions for flying and navigating to the destination. The landing mode includes landing instructions for a landing sequence into a landing zone at the destination.
Abstract:
Method and apparatus for planning and modifying a vehicle operation plan. A vehicle operation plan for a vehicle schedule is determined based on performance constraints of the vehicle and an operational rule file that defines operational restrictions on the vehicle based on states of the vehicle. In the event a state changes from a planned state, the vehicle automatically and autonomously recalculates the vehicle operation plan in a manner that satisfies the performance constraints and the operational restrictions.
Abstract:
Methods and systems are provided for prioritizing a plurality of maintenance corrective actions in a troubleshooting chart for a device are provided. The method includes receiving, by a processor, an input from a user indicative of a successful corrective action from the plurality of corrective actions on the troubleshooting chart and incrementing a value of a counter associated with the successful corrective action. The processor then compares values for counters associated with each of the plurality of corrective actions and displays the plurality of corrective actions in hierarchal order based on the values of the counters.
Abstract:
Systems and methods for use in identifying at least one alternate airport for an aircraft. One example method includes identifying a plurality of airports based on static data associated with the plurality of airports, and identifying, at a processing device, at least one preferred airport from the plurality of airports based on dynamic data associated with at least the at least one preferred airport, wherein the static data and/or the dynamic data is associated with at least one weight that enables at least one of the plurality of airports to be identified based on a relative importance of the static data and/or the dynamic data.
Abstract:
Methods, systems, and computer-readable media are described herein for displaying MPA procedures on a display unit of an aircraft. An assigned MPA approach path to an arrival runway is received at the aircraft. Data regarding a number of predefined MPA approach paths associated with the arrival runway are retrieved, and the assigned MPA approach path is displayed on the display unit in conjunction with other of the predefined approach paths associated with the arrival runway.
Abstract:
A system for landing an unmanned aerial vehicle (UAV) at a destination includes a landing coordination control unit that is configured to switch the UAV from a normal operating mode to a landing mode in response to the UAV entering a regulated airspace in relation to the destination. The normal operating mode includes normal instructions for flying and navigating to the destination. The landing mode includes landing instructions for a landing sequence into a landing zone at the destination.
Abstract:
A system for taking into account micro wind conditions in a region. The system comprises a plurality of aerial vehicles within the region and a wind speed calculator. Each of the plurality of aerial vehicles has an altitude sensor and a GPS receiver. The wind speed calculator is configured to determine wind vectors within the region using measurements from the plurality of aerial vehicles.
Abstract:
Methods and systems are provided for prioritizing a plurality of maintenance corrective actions in a troubleshooting chart for a device are provided. The method includes receiving, by a processor, an input from a user indicative of a successful corrective action from the plurality of corrective actions on the troubleshooting chart and incrementing a value of a counter associated with the successful corrective action. The processor then compares values for counters associated with each of the plurality of corrective actions and displays the plurality of corrective actions in hierarchal order based on the values of the counters.
Abstract:
A system for landing an unmanned aerial vehicle (UAV) at a destination includes a landing coordination control unit that is configured to switch the UAV from a normal operating mode to a landing mode in response to the UAV entering a regulated airspace in relation to the destination. The normal operating mode includes normal instructions for flying and navigating to the destination. The landing mode includes landing instructions for a landing sequence into a landing zone at the destination.