Abstract:
Compounds that exhibit aggregation induced emission (AIE), and more particularly to water-soluble conjugated polyene compounds that exhibit aggregation induced emission. The conjugated polyene compounds can be used as bioprobes for DNA detection, G-quadruplex identification, and potassium-ion sensing. The polyenes also can be utilized as an external fluorescent marker to study conformational structures, to monitor folding processes of label-free oligonucleotides with G-rich strand sequences, and to visualize DNA bands in PAGE assay. The polyenes have applications in high-throughput anticancer drug screening and are useful for the development of efficient anti-cancer drugs. Furthermore, the present subject matter can also be used to monitor fibrillation of amyloid proteins and to facilitate the storage and delivery thereof.
Abstract:
AIE (aggregation-induced emission)-active TPE derivatives, TPE-TPP, TPE-MitoR and TPE-IQ are contemplated. These specific TPE derivatives are useful as fluorescent agents for mitochondrial imaging and as apoptosis inducers. Possessing high specificity to mitochondria, superior photostability and appreciable tolerance to microenvironment change, TPE derivatives are well-suited imaging agents for mitochondrial targeting and morphological change tracking. Because of their synthetic flexibility, TPE derivatives can be further modified as dual-functional probes for an array of applications such as sensing of ROS, metal ions, or pH change in mitochondria.
Abstract:
Provided herein are fluorescent bioprobes comprising fluorogens that exhibit aggregation-induced emission (AIE) labeled on biomolecules. The present subject matter relates to a fluorescent bioprobe comprising one or more fluorogen labeled on chitosan. The present subject matter is also directed to methods of preparing the fluorescent bioprobes, methods of labeling and detecting DNA and/or proteins with the fluorescent bioprobe, and methods of cell imaging including live cell tracking.
Abstract:
The present subject matter relates to a one-step method of detecting and quantifying cardiolipin in a sample using a positively charged AIE luminogen by introducing the AIE luminogen to a solution containing the sample and measuring fluorescence intensity of the solution; a method of quantifying isolated mitochondria using a positively charged AIE luminogen by staining a sample containing isolated mitochondria with the AIE luminogen and measuring the fluorescence intensity; and a method of quantifying isolated mitochondria using a positively charged AIE luminogen by introducing the AIE luminogen to a sample containing isolated mitochondria, wherein the AIE luminogen stains the isolated mitochondria and identifying the stained isolated mitochondria under microscope. With improved sensitivity and excellent selectivity to CL over other major mitochondrial membrane lipids, an aggregation-induced emission-active fluorogen, TTAPE-Me, may serve as a valuable fluorescent sensor for CL detection and quantification and the quantification of isolated mitochondria.
Abstract:
Fluorescent bioprobes comprising luminogen formed nanoparticles comprising luminogens with aggregation-induced emission (AIE) properties, which can be used for long-term cell tracking. The luminogens are nonemissive in organic solution but become highly emissive when aggregated in aqueous solution. The fluorescent molecules can readily pass through cell membranes, stain only the cell cytoplasm, and form highly emissive nanoaggregates in aqueous media without any obvious cytoxicity in the living cells. Furthermore, the molecules can be retained inside the cells without noticeable leakage to the outside. Therefore, these AIE-based compounds can be used as selective and cell-compatible fluroescent bioprobes for long-term live cell tracking and imaging.