Abstract:
A fiber-reinforced resin composition includes a polyarylene sulfide (A), a carbodiimide compound (B) and carbon fibers (C) in specific blending amounts and in which the carbon fibers (C) are surface-treated with a sizing agent (D), the carbodiimide compound (B) is an aliphatic carbodiimide compound, and the sizing agent (D) is a compound having three or more specific functional groups in one molecule; and a fiber-reinforced composite material includes a thermoplastic resin (A′), an adhesive compound (B′) and reinforcing fibers (C′) and in which the adhesive compound (B′) is a compound having two or more specific structures in one molecule, the thermoplastic resin (A′) is a thermoplastic resin containing an element other than carbon in a repeating unit structure of a main chain, and an abundance ratio Rb of the adhesive compound (B′) is 1.2 or more.
Abstract:
A carbon fiber-reinforced polyarylene sulfide has both dynamic characteristics and molding cycle characteristics and can be produced with high productivity by preparing a polycarbodiimide-modified polyarylene sulfide using a polyarylene sulfide and a polycarbodiimide as raw materials, then melting the resulting polycarbodiimide-modified polyarylene sulfide, and combining the polycarbodiimide-modified polyarylene sulfide with carbon fibers at a specific ratio to produce a composite.
Abstract:
The present invention addresses the problem of providing: a towpreg that has superior bobbin unspoolability and process pass-through properties, and is capable of yielding a fiber-reinforced composite having extremely high 0° tensile strength utilization; and a pressure vessel using such a towpreg. The means for solving this problem is a towpreg obtained by impregnating a reinforcing fiber tow with an epoxy resin composition containing [A]-[D], wherein: the epoxy resin composition contains 10-90 parts by mass of [A] and 10-50 parts by mass of [B] per 100 parts by mass of the epoxy resin component; the epoxy resin composition has a 25° C. viscosity (η25) of 1-40 Pa·s and a 40° C. viscosity (η40) of 0.2-5 Pa·s; and the cured epoxy resin composition has a glass transition temperature (Tg) of 95° C. or higher. [A] A bisphenol epoxy resin [B] Unsubstituted or substituted N,N-diglycidyl aniline [C] Dicyandiamide [D] A cure accelerator
Abstract:
Provided are: an epoxy resin composition for fiber-reinforced composite materials, which has a good balance between storage stability and fast curing properties at high levels; a prepreg; and an epoxy resin composition which exhibits excellent mechanical characteristics as a fiber-reinforced composite material. A resin composition which contains an epoxy resin, dicyandiamide, an imidazole compound and an acidic compound, while satisfying the following conditions (a)-(c): (d) The time until the heat flow rate reaches the peak top after the epoxy resin composition reaches 100° C. is 25 minutes or less as measured by a differential scanning calorimeter at an isothermal temperature of 100° C. in a nitrogen gas stream. (e) The time until the heat flow rate reaches the peak top after the epoxy resin composition reaches 60° C. is 15 hours or more as measured by a differential scanning calorimeter at an isothermal temperature of 60° C. in a nitrogen gas stream. (f) The ratio of the number of epoxy groups to the number of imidazole rings in the epoxy resin composition is from 25 to 90 (inclusive).
Abstract:
An epoxy resin composition includes [A] an epoxy resin, [B] dicyandiamide, [C] an aromatic urea and [D] a boric acid ester and satisfies any one of (i) requirements [a] and [b], (ii) requirements [c] and [d] and (iii) requirements [c] and [e]: [a]: the time from when the temperature reaches 100° C. till when the heat flow reaches a peak top is 60 minutes or shorter as determined by a differential scanning calorimetry; [b]: the time from when the temperature reaches 60° C. till when the heat flow reaches a peak top is 25 hours or longer as determined by a differential scanning calorimetry; [c]: the average in all of the epoxy resins is 165 to 265 g/eq inclusive; [d]: in the component [A], [A1] a resin represented by formula (I) and/or a resin represented by formula (II) is contained in an amount of 10 to 50 parts by mass relative to the total amount of all of the epoxy resins; and [e]: in the component [A], [A2] a glycidylamine-type resin having a functionality of 3 or higher is contained in an amount of 10 to 50 parts by mass relative to the total amount of all of the epoxy resins.
Abstract:
A prepreg having excellent tackiness as well as excellent resin strength after curing and strength in the non-fiber direction is described; and a fiber-reinforced composite material using the prepreg, where the prepreg is composed of reinforcing fibers and a resin composition which includes [A] an epoxy resin, [B] a dicyanamide and [C] a compound having a melting point of 130° C. or lower and a solubility parameter whose difference from the solubility parameter of [B] is 8 or less.
Abstract:
Provided is a fiber-reinforced composite material exhibiting high heat resistance and excellent appearance quality. is the composite material is based on an epoxy resin composition which contains constituents [A], [B], and [C] and satisfies conditions (i) and (ii): [A] a tri- or higher functional epoxy resin; [B] an aromatic amine; [C] an imidazole compound; 0.20≤b/a≤0.60; and (i) 0.002≤c/a≤0.014; (ii) wherein a (mol) denotes the number of epoxy groups in 100 g of the epoxy resin composition, b (mol) denotes the number of active hydrogens contained in the constituent [B], and c (mol) denotes the number of imidazole rings contained in the constituent [C]).
Abstract:
The present invention provides an epoxy resin composition that serves to produce a cured epoxy resin that simultaneously realizes a high heat resistance, a high elastic modulus, and a low color and to produce a molded article having a good appearance without suffering the formation of white spots on the surface thereof when used as matrix resin in a fiber reinforced composite material. The epoxy resin composition includes an epoxy resin as component [A] and an imidazole compound as component [B] and meets certain conditions (a) to (d).
Abstract:
There is provided a cured product of an epoxy resin composition, in which the compounding composition and the phase-separated structure of the epoxy resin composition are controlled so that the balance between rigidity and toughness of the cured product is superior compared with those of cured products of conventional epoxy resin compositions. A cured product of an epoxy resin composition, which has both superior rigidity and superior toughness compared with conventional materials can be produced by curing an epoxy resin composition comprising an epoxy resin, a polyrotaxane having graft-chain-modified cyclic molecules and a curing agent for the epoxy resin.
Abstract:
An epoxy resin composition includes [A] an epoxy resin, [B] dicyandiamide, [C] an aromatic urea and [D] a boric acid ester and satisfies any one of (i) requirements [a] and [b], (ii) requirements [c] and [d] and (iii) requirements [c] and [e]:[a]: the time from when the temperature reaches 100° C. till when the heat flow reaches a peak top is 60 minutes or shorter as determined by a differential scanning calorimetry; [b]: the time from when the temperature reaches 60° C. till when the heat flow reaches a peak top is 25 hours or longer as determined by a differential scanning calorimetry; [c]: the average in all of the epoxy resins is 165 to 265 g/eq inclusive; [d]: in the component [A], [A1] a resin represented by formula (I) and/or a resin represented by formula (II) is contained in an amount of 10 to 50 parts by mass relative to the total amount of all of the epoxy resins; and [e]: in the component [A], [A2] a glycidylamine-type resin having a functionality of 3 or higher is contained in an amount of 10 to 50 parts by mass relative to the total amount of all of the epoxy resins.