Abstract:
A semiconductor structure includes a module with a plurality of die regions, a plurality of light-emitting devices disposed upon the substrate so that each of the die regions includes one of the light-emitting devices, and a lens board over the module and adhered to the substrate with glue. The lens board includes a plurality of microlenses each corresponding to one of the die regions, and at each one of the die regions the glue provides an air-tight encapsulation of one of the light-emitting devices by a respective one of the microlenses. Further, phosphor is included as a part of the lens board.
Abstract:
A light-emitting diode (LED) lamp includes a number of different color LEDs that can be turned on and off in different combinations using an external switch operable by a user. A user or a controller can adjust the color temperature of light output by the lamp. The color temperature change may be a user preference and can compensate for decreased phosphor efficiency over time.
Abstract:
A Light Emitting Diode (LED) module includes a circuit board having a front side and a back side, a heat sink coupled to the back side of the circuit board, a thermal pad disposed on a front side of the circuit board, an LED disposed on the front side of the circuit board. The LED is in thermal contact with the thermal pad. The module further includes a heat spreading device placed over the thermal pad and in thermal contact with the thermal pad.
Abstract:
The present disclosure involves a street light. The street light includes a base, a lamp post coupled to the base, and a lamp head coupled to the lamp post. The lamp head includes a housing and a plurality of LED light modules disposed within the housing. The LED light modules are separate and independent from each other. Each LED light module includes an array of LED that serve as light sources for the lamp. Each LED light module also includes a heat sink that is thermally coupled to the LED. The heat sink is operable to dissipate heat generated by the LED during operation. Each LED light module also includes a thermally conductive cover having a plurality of openings. Each LED is aligned with and disposed within a respective one of the openings.
Abstract:
A light-emitting diode (LED) lamp includes a number of different color LEDs that can be turned on and off in different combinations using an external switch operable by a user. A user or a controller can adjust the color temperature of light output by the lamp. The color temperature change may be a user preference and can compensate for decreased phosphor efficiency over time.
Abstract:
An apparatus includes a light-emitting device. A diffuser is disposed over the light-emitting device. A heat sink is disposed below, and thermally coupled to, the light-emitting device. The heat sink includes a body and a plurality of fins that radially protrude from the body of the heat sink. The fins define a plurality of ducts. A cover plate circumferentially surrounds the heat sink. The cover plate includes a plurality of openings that are disposed over the plurality of ducts, respectively.
Abstract:
The present disclosure provides an illumination device. The illumination device includes a cap structure. The cap structure is partially coated with a reflective material operable to reflect light. The illumination device includes one or more lighting-emitting devices disposed within the cap structure. The light-emitting devices may be light-emitting diode (LED) chips. The illumination device also includes a thermal dissipation structure. The thermal dissipation structure is coupled to the cap structure in a first direction. The thermal dissipation structure and the cap structure have a coupling interface. The coupling interface extends in a second direction substantially perpendicular to the first direction. The thermal dissipation structure has a portion that intersects the coupling interface at an angle. The angle is in a range from about 60 degrees to about 90 degrees according to some embodiments.
Abstract:
A lamp includes a substrate, a plurality of light-emitting devices located over the substrate, and a cap that is located over the light-emitting devices. The plurality of light-emitting devices include a first subset of light-emitting devices and a second subset of light-emitting devices. Each light-emitting device in the first subset is free of a phosphor coating. Each light-emitting device in the second subset includes a phosphor coating. The cap has both photo-conversion properties and light-scattering properties, and the cap is located over the first subset of the light-emitting devices but exposes the second subset of the light-emitting devices.
Abstract:
The present disclosure provides one embodiment of an illumination structure. The illumination structure includes a substrate. A light-emitting diode (LED) is disposed over the substrate. A first lens is disposed over the LED. A second lens is disposed over the first lens. The first lens and the second lens are configured to refract light that is emitted by the LED backward.
Abstract:
A lighting device includes a multi-faceted heat sink with facets in a center portion facing outward. The facets form a central enclosed portion, and the heat sink further has a plurality of fins, where each of the fins is placed between adjacent facets and protrudes outwardly from the heat sink. The lighting device also has a plurality of circuit boards with semiconductor emitters mounted thereon. Each of the circuit boards is mounted on a respective facet of the heat sink. The lighting device also has a light-diffusion housing covering the plurality of circuit boards, a power module in communication with the circuit boards and operable to convert power to be compatible with the semiconductor emitters, and a power connector assembly in electrical communication with the power module.