Abstract:
According to one embodiment, a stamper manufacturing method comprises electroless plating by using a master includes a substrate, a conductive underlayer formed on the substrate and having catalytic activity, projecting patterns having no catalytic activity and partially formed on a surface of the conductive underlayer having catalytic activity, and regions in which the conductive underlayer having catalytic activity is exposed between the projecting patterns to deposit selectively an amorphous conductive layer between the projecting patterns and in the regions in which the conductive underlayer is exposed, and forming stamper projections, electroplating on the stamper projections includes the projecting patterns and the amorphous conductive layer by using the amorphous conductive layer and the conductive underlayer as electrodes to form a stamper main body made of a crystalline metal, and releasing a stamper includes the stamper projections and the stamper main body from the master.
Abstract:
A generation unit is configured to generate a black color material data and the plurality of pieces of chromatic color material data, for a color positioned at a surface of a dark portion in a color gamut that can be reproduced using a black color material and the plurality of chromatic color materials, in such a way as to arrange dots of the black color material and respective dots of the plurality of chromatic color materials exclusively on a recording medium and set a rate of the arranged dots of the black color material to be greater as the color positioned at the surface is closer to black.
Abstract:
According to one embodiment, patterns of protrusions and recesses includes a substrate including a conductive region on at least one major surface, and a projecting pattern layer formed on the conductive region on the major surface, and made of a microcrystalline material, a polycrystalline material, an amorphous material, or an oxide of the microcrystalline, polycrystalline, or amorphous material.
Abstract:
A tincture adjustment value used to adjust a monochrome signal to a tincture desired by a user is set, and a tincture conversion table and chromaticity line table are generated based on that tincture adjustment value and the profile of an image output apparatus. Using the generated tables, a lightness signal L* corresponding to an input monochrome signal is converted into a distance signal 1 on a chromaticity line, and the distance signal 1 is converted into a chromaticity signal (a*, b*). The lightness signal L* and chromaticity signal (a*, b*) are converted into a color signal of the image output apparatus.
Abstract:
In one embodiment, a method of manufacturing a mold includes: forming a first layer having an affinity to a second polymer on a substrate having an affinity to a first polymer; forming first and second openings in the first layer; filling a resist in the second openings and hardening the resist to obtain a hardened resist; and forming a second layer containing a block copolymer and causing it to self-assemble.
Abstract:
A pattern forming method according to an embodiment includes: forming a pattern film on a first substrate, the pattern film having a concave-convex pattern, the pattern film being made of a material containing a first to-be-imprinted agent; forming a material film on a second substrate, the material film containing a second to-be-imprinted agent having a higher etching rate than an etching rate of the first to-be-imprinted agent; transferring the concave-convex pattern of the pattern film onto the material film by applying pressure between the first substrate and the second substrate, with the pattern film being positioned to face the material film, and by curing the second to-be-imprinted agent; detaching the first substrate from the pattern film; and removing the material film by etching, to leave the pattern film on the second substrate.
Abstract:
The relationship between the applying amounts of colored inks and the thickness of the layer of a color material formed on a recording medium, and the relationship between the applying amount of uncolored ink and the thickness of the layer of the color material formed on the recording medium are acquired. Based on the relationships between the applying amounts and the thickness of the layer of the color material, the applying amounts of colored inks and the applying amount of uncolored ink are determined to substantially uniform the thickness of the layer of the color material when forming an image on a recording medium. A color separation table for color-separating image data is generated based on the applying amounts of colored inks and the applying amount of uncolored ink.
Abstract:
A tincture adjustment value used to adjust a monochrome signal to a tincture desired by a user is set, and a tincture conversion table and chromaticity line table are generated based on that tincture adjustment value and the profile of an image output apparatus. Using the generated tables, a lightness signal L* corresponding to an input monochrome signal is converted into a distance signal l on a chromaticity line, and the distance signal l is converted into a chromaticity signal (a*, b*). The lightness signal L* and chromaticity signal (a*, b*) are converted into a color signal of the image output apparatus.
Abstract:
Color appearances do not satisfactorily match between recording paper sheets with different gloss characters even using a colorimetric matching process. Hence, the differences between the gloss characters of the recording paper sheets are obtained as correction amounts, and a media profile indicating correspondence between color signals of an image forming apparatus and calorimetric signals corresponding to recording paper is corrected on the basis of the obtained correction amounts.
Abstract:
A tincture adjustment value used to adjust a monochrome signal to a tincture desired by a user is set, and a tincture conversion table and chromaticity line table are generated based on that tincture adjustment value and the profile of an image output apparatus. Using the generated tables, a lightness signal L* corresponding to an input monochrome signal is converted into a distance signal l on a chromaticity line, and the distance signal l is converted into a chromaticity signal (a*, b*). The lightness signal L* and chromaticity signal (a*, b*) are converted into a color signal of the image output apparatus.