Abstract:
A method of processing a substrate that includes: exposing the substrate in a plasma processing chamber to a plasma powered by applying a first power to a first electrode of a plasma processing chamber; turning OFF the first power to the first electrode after the first time duration; while the first power is OFF, applying a second power to a second electrode of the plasma processing chamber for a second time duration, the second time duration being shorter than the first time duration, an energy of the second power over the second time duration is less than an energy of the first power over the first time duration by a factor of at least 2; and detecting an optical emission spectrum (OES) from species in the plasma processing chamber.
Abstract:
Disclosed are embodiments of an improved apparatus and system, and associated methods for optically diagnosing a semiconductor manufacturing process. A hyperspectral imaging system is used to acquire spectrally-resolved images of emissions from the plasma, in a plasma processing system. Acquired hyperspectral images may be used to determine the chemical composition of the plasma and the plasma process endpoint. Alternatively, a hyperspectral imaging system is used to acquire spectrally-resolved images of a substrate before, during, or after processing, to determine properties of the substrate or layers and features formed on the substrate, including whether a process endpoint has been reached; or before or after processing, for inspecting the substrate condition.
Abstract:
A method of processing a substrate that includes: exposing the substrate in a plasma processing chamber to a plasma powered by applying a first power to a first electrode of the plasma processing chamber for a first time duration; and after the first time duration, determining a process endpoint by: while exposing the substrate to the plasma by applying the first power to the first electrode, applying a second power to a second electrode of the plasma processing chamber for a second time duration that is shorter than the first time duration; and obtaining an optical emission spectrum (OES) from the plasma while applying the second power to the second electrode, where an energy of the second power over the second time duration is less than an energy of the first power over a sum of the first and the second time durations by a factor of at least 2.
Abstract:
Disclosed are embodiments of an improved apparatus and system, and associated methods for optically diagnosing a semiconductor manufacturing process. A hyperspectral imaging system is used to acquire spectrally-resolved images of emissions from the plasma, in a plasma processing system. Acquired hyperspectral images may be used to determine the chemical composition of the plasma and the plasma process endpoint. Alternatively, a hyperspectral imaging system is used to acquire spectrally-resolved images of a substrate before, during, or after processing, to determine properties of the substrate or layers and features formed on the substrate, including whether a process endpoint has been reached; or before or after processing, for inspecting the substrate condition.
Abstract:
Disclosed is a method, computer method, system, and apparatus for measuring two-dimensional distributions of optical emissions from a plasma in a semiconductor plasma processing chamber. The acquired two-dimensional distributions of plasma optical emissions can be used to infer the two-dimensional distributions of concentrations of certain chemical species of interest that are present in the plasma, and thus provide a useful tool for process development and also for new and improved processing tool development. The disclosed technique is computationally simple and inexpensive, and involves the use of an expansion of the assumed optical intensity distribution into a sum of basis functions that allow for circumferential variation of optical intensity. An example of suitable basis functions are Zernike polynomials.
Abstract:
Described herein are architectures, platforms and methods for determining endpoints of an optical emission spectroscopy (OES) data acquired from a plasma processing system. The OES data, for example, includes an absorption—step process, a desorption—step process, or a combination thereof. In this example, the OES data undergoes signal synchronization and transient signal filtering prior to endpoint determination, which may be implemented through an application of a moving average filter.
Abstract:
Disclosed is a method for determining an endpoint of an etch process using optical emission spectroscopy (OES) data as an input. Optical emission spectroscopy (OES) data are acquired by a spectrometer attached to a plasma etch processing tool. The acquired time-evolving spectral data are first filtered and demeaned, and thereafter transformed into transformed spectral data, or trends, using multivariate analysis such as principal components analysis, in which previously calculated principal component weights are used to accomplish the transform. A functional form incorporating multiple trends may be used to more precisely determine the endpoint of an etch process. A method for calculating principal component weights prior to actual etching, based on OES data collected from previous etch processing, is disclosed, which method facilitates rapid calculation of trends and functional forms involving multiple trends, for efficient and accurate in-line determination of etch process endpoint.
Abstract:
Aspects of the present disclosure provide a method for wavelength calibration of a spectrometer. The method can include receiving a calibration light signal having first spectral components of different first wavelengths; separating and projecting the first spectral components onto pixels of a detector of the spectrometer; establishing a relation between the first wavelengths and pixel numbers of first pixels on which the first spectral components are projected; calculating first residual errors between the first wavelengths and estimated wavelengths that are associated by the relation to the pixel numbers of the first pixels; receiving an optical signal having a second spectral component of a second wavelength; projecting the optical signal onto a second pixel; and calibrating the second wavelength based on a second residual error calculated based on one of the first residual errors that corresponds to a pair of the first pixels between which the second pixel is located.
Abstract:
Described is a method for determining an endpoint of an etch process using optical emission spectroscopy (OES) data as an input. OES data is acquired by a spectrometer in a plasma etch processing chamber. The acquired time-evolving spectral data is first filtered and de-meaned, and thereafter transformed into transformed spectral data, or trends, using multivariate analysis such as principal components analysis, in which previously calculated principal component weights are used to accomplish the transform. Grouping of the principal components weights into two separate groups corresponding to positive and negative natural wavelengths, creates separate signed trends (synthetic wavelengths).
Abstract:
Disclosed are embodiments of an improved apparatus and system, and associated methods for optically diagnosing a semiconductor manufacturing process. A hyperspectral imaging system is used to acquire spectrally-resolved images of emissions from the plasma, in a plasma processing system. Acquired hyperspectral images may be used to determine the chemical composition of the plasma and the plasma process endpoint. Alternatively, a hyperspectral imaging system is used to acquire spectrally-resolved images of a substrate before, during, or after processing, to determine properties of the substrate or layers and features formed on the substrate, including whether a process endpoint has been reached; or before or after processing, for inspecting the substrate condition.