Abstract:
A semiconductor device includes a magnetic tunneling junction (MTJ) on a substrate, a first spin orbit torque (SOT) layer on the MTJ, a spacer adjacent to the MTJ and the first SOT layer, and a second SOT layer on the first SOT layer. Preferably, the first SOT layer and the second SOT layer are made of same material.
Abstract:
A semiconductor device includes a magnetic tunneling junction (MTJ) on a substrate, a first spin orbit torque (SOT) layer on the MTJ, a second SOT layer on the first SOT layer, a hard mask between the first SOT layer and the second SOT layer, and a spacer adjacent to the MTJ, the first SOT layer, and the hard mask.
Abstract:
A method for fabricating a semiconductor device includes the steps of: forming a magnetic tunneling junction (MTJ) stack on a substrate; forming a first spin orbit torque (SOT) layer on the MTJ stack; forming a first hard mask on the first SOT layer; and using a second hard mask to pattern the first hard mask, the first SOT layer, and the MTJ stack to form a MTJ.
Abstract:
A method for forming a semiconductor structure is disclosed. A substrate having a logic device region and a memory device region is provided. A first dielectric layer is formed on the substrate. Plural memory stack structures are formed on the first dielectric layer on the memory device region. An insulating layer is formed and conformally covers the memory stack structures and the first dielectric layer. An etching back process is performed to remove a portion of the insulating layer without exposing any portion of the memory stack structures. After the etching back process, a second dielectric layer is formed on the insulating layer and completely fills the spaces between the memory stack structures.
Abstract:
A magneto-resistive random access memory (MRAM) cell includes a substrate having a dielectric layer disposed thereon, a conductive via disposed in the dielectric layer, and a cylindrical stack disposed on the conductive via. The cylindrical stack includes a bottom electrode, a magnetic tunneling junction (MTJ) layer on the bottom electrode, and a top electrode on the MTJ layer. A spacer layer is disposed on a sidewall of the cylindrical stack. The top electrode protrudes from a top surface of the spacer layer.
Abstract:
A complementary metal oxide semiconductor field-effect transistor (MOSFET) includes a substrate, a first MOSFET and a second MOSFET. The first MOSFET is disposed on the substrate within a first transistor region and the second MOSFET is disposed on the substrate within a second transistor region. The first MOSFET includes a first fin structure, two first lightly-doped regions, two first doped regions and a first gate structure. The first fin structure includes a first body portion and two first epitaxial portions, wherein each of the first epitaxial portions is disposed on each side of the first body portion. A first vertical interface is between the first body portion and each of the first epitaxial portions so that the first-lightly doped region is able to be uniformly distributed on an entire surface of each first vertical interface.
Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate having a fin-shaped structure thereon and a shallow trench isolation (STI) around the fin-shaped structure, in which the fin-shaped structure has a top portion and a bottom portion; forming a first doped layer on the STI and the top portion; and performing a first anneal process.
Abstract:
A semiconductor device includes a substrate, gate electrodes, spacers and contact structures. The gate electrodes are disposed on the substrate, and the spacers are disposed on the sidewalls of the gate electrodes. Each of the spacers has an inner sidewall and an outer sidewall. The contact structure is disposed between the gate electrodes, and its bottom is in direct contact with all the region of the outer sidewall of the spacers.
Abstract:
A complementary metal oxide semiconductor field-effect transistor (MOSFET) includes a substrate, a first MOSFET and a second MOSFET. The first MOSFET is disposed on the substrate within a first transistor region and the second MOSFET is disposed on the substrate within a second transistor region. The first MOSFET includes a first fin structure, two first lightly-doped regions, two first doped regions and a first gate structure. The first fin structure includes a first body portion and two first epitaxial portions, wherein each of the first epitaxial portions is disposed on each side of the first body portion. A first vertical interface is between the first body portion and each of the first epitaxial portions so that the first-lightly doped region is able to be uniformly distributed on an entire surface of each first vertical interface.
Abstract:
A manufacturing method of semiconductor devices having metal gate includes following steps. A substrate having a first semiconductor device and a second semiconductor device formed thereon is provided. The first semiconductor device includes a first gate trench and the second semiconductor device includes a second gate trench. A first work function metal layer is formed in the first gate trench and the second gate trench. A portion of the first work function metal layer is removed from the second gate trench. A second work function metal layer is formed in the first gate trench and the second gate trench. The second work function metal layer and the first work function metal layer include the same metal material. A third work function metal layer and a gap-filling metal layer are sequentially formed in the first gate trench and the second gate trench.