Abstract:
The present disclosure describes various aspects of devices and methods that are directed to systems for controlling power systems. A device comprises at least one power source unit having a plurality of physical unit pins, at least one sensor to measure a characteristic of at least one power source unit, and a microcontroller. The microcontroller comprises a memory with at least virtual unit object, at least one virtual sensor object, and a set of software instructions to cause the microcontroller to control the at least power source unit via at least one switch using a three-layer control scheme.
Abstract:
A hydrogen evolution assisted electroplating nozzle includes a nozzle tip configured to interface with a portion of a substructure. The nozzle also includes an inner coaxial tube connected to a reservoir containing an electrolyte and an anode, the inner coaxial tube configured to dispense the electrolyte through the nozzle tip onto the portion of the substructure. The nozzle also includes an outer coaxial tube encompassing the inner coaxial tube, the outer coaxial tube configured to extract the electrolyte from the portion of the substructure. The nozzle also includes at least one contact pin configured to make electrical contact with a conductive track on the substrate.
Abstract:
A hydrogen evolution assisted electroplating nozzle includes a nozzle tip configured to interface with a portion of a substructure. The nozzle also includes an inner coaxial tube connected to a reservoir containing an electrolyte and an anode, the inner coaxial tube configured to dispense the electrolyte through the nozzle tip onto the portion of the substructure. The nozzle also includes an outer coaxial tube encompassing the inner coaxial tube, the outer coaxial tube configured to extract the electrolyte from the portion of the substructure. The nozzle also includes at least one contact pin configured to make electrical contact with a conductive track on the substrate.
Abstract:
The present disclosure presents glucose monitoring systems and methods. One such system comprises a glucose monitoring sensor having at least a counter electrode, a reference electrode, and a working electrode; and a silicon-carbide-silicon-carbide-nanoparticles-electrospun-nanofibrous-membrane contacting the working electrode. The system further includes a glucose oxidase enzyme solution contacting the silicon-carbide-silicon-carbide-nanoparticles-electrospun-nanofibrous-membrane, wherein a conductive polymer membrane assists in binding the glucose oxidase enzyme composition with the silicon-carbide-silicon-carbide-nanoparticles-electrospun-nanofibrous-membrane. Other systems and methods are also provided.
Abstract:
A breath collection device can detect changes associated with pathogenesis of a disease, such as COVID-19, including biomarkers of immune response for respiratory symptoms, central nervous system injury, and/or peripheral nervous system injury in user breath and/or odor. The breath collection device can detect concentrations of alcohol, acetone, and carbon monoxide in user breath samples. A breath sample can be received in an internal bladder of the device for sensor analysis. Concentrations of alcohol, acetone, and carbon monoxide can be determined by calibrated calculation. A detection method for alcohol, acetone, and carbon monoxide can provide a non-invasive, rapid, and selective detection of gases in a variety of applications in virus detection as well as agricultural and homeland security.
Abstract:
A method of forming an ordered nanorods array in a confined space is used to form a high surface area device where an ensemble of parallel trenches has micrometer dimensions for the width and depth of the trenches, which are decorated with crystalline nanowires radiating from the sidewalls and bases of the trenches. The high surface area device is formed by depositing a conformal crystalline seed coating in the trenches, forming microchannels from these trenches by placing a barrier layer on the open surface of the trenches, contacting the conformal coating with a crystal precursor solution that is caused to flow through the microchannels. In an embodiment, a very high surface area electrode is constructed with ZnO nanowires radiating from the sidewalls and base of trenches formed on a silicon substrate. The device can be a dye-sensitized solar cell.
Abstract:
A method of forming an ordered nanorods array in a confined space is used to form a high surface area device where an ensemble of parallel trenches has micrometer dimensions for the width and depth of the trenches, which are decorated with crystalline nanowires radiating from the sidewalls and bases of the trenches. The high surface area device is formed by depositing a conformal crystalline seed coating in the trenches, forming microchannels from these trenches by placing a barrier layer on the open surface of the trenches, contacting the conformal coating with a crystal precursor solution that is caused to flow through the microchannels. In an embodiment, a very high surface area electrode is constructed with ZnO nanowires radiating from the sidewalls and base of trenches formed on a silicon substrate. The device can be a dye-sensitized solar cell.
Abstract:
Electrochemical cells that include composite gel positioned between the first electrode and second electrode, where the composite gel comprises an electrolyte, a polyaryl amine, and an oxidant. The utilized composite gels are easy to produce at a low-cost, which makes them suitable in a number of different applications electrochromic devices, supercapacitors, solar cells, and hybrid photoactive supercapacitors.
Abstract:
Disclosed are various embodiments for integrated diffuse correlation spectroscopy. A first control signal can be sent to a switch to cause an integrator to integrate a current from a photodiode. An integrated current can be received from the integrator, and a data signal can be sent to a computing device based at least in part on the integrated current. A second control signal can be sent to a switch to cause the integrator to cease integrating the current from the photodiode.
Abstract:
A method of forming an ordered nanorods array in a confined space is used to form a high surface area device where an ensemble of parallel trenches has micrometer dimensions for the width and depth of the trenches, which are decorated with crystalline nanowires radiating from the sidewalls and bases of the trenches. The high surface area device is formed by depositing a conformal crystalline seed coating in the trenches, forming microchannels from these trenches by placing a barrier layer on the open surface of the trenches, contacting the conformal coating with a crystal precursor solution that is caused to flow through the microchannels. In an embodiment, a very high surface area electrode is constructed with ZnO nanowires radiating from the sidewalls and base of trenches formed on a silicon substrate. The device can be a dye-sensitized solar cell.