Dual diffraction order spin-on-glass phase-grating beam-splitter based oblique incidence nanopatterning and methods thereof

    公开(公告)号:US12204249B1

    公开(公告)日:2025-01-21

    申请号:US17853630

    申请日:2022-06-29

    Abstract: A system for oblique incidence nanopatterning a sample using a grating beam-splitter is disclosed. The system also includes a grating beam-splitter on a tip-tilt adjustable mount. The system also includes a photoresist coated sample mounted on a tip-tilt-z adjustable mount. The system also includes an alignment system to allow adjustment of the tip-tilt adjustable mounts so that a surface of the grating beam-splitter and a surface of the photoresist coated sample are substantially parallel. The system also includes a laser operating at a wavelength suitable for exposure of the photoresist. The system also includes an optical system to deliver a laser beam at oblique incidence to the grating beam-splitter to expose the photoresist coated sample. The system also includes means to control an exposure dose of the laser beam. A system using two grating beam-splitters to provide increased alignment tolerance is also disclosed.

    Innovative nanopore sequencing technology

    公开(公告)号:US12203921B2

    公开(公告)日:2025-01-21

    申请号:US18528948

    申请日:2023-12-05

    Abstract: Methods and apparatus for long read, label-free, optical nanopore long chain molecule sequencing. In general, the present disclosure describes a novel sequencing technology based on the integration of nanochannels to deliver single long-chain molecules with widely spaced (>wavelength), ˜1-nm aperture “tortuous” nanopores that slow translocation sufficiently to provide massively parallel, single base resolution using optical techniques. A novel, directed self-assembly nanofabrication scheme using simple colloidal nanoparticles is used to form the nanopore arrays atop nanochannels that unfold the long chain molecules. At the surface of the nanoparticle array, strongly localized electromagnetic fields in engineered plasmonic/polaritonic structures allow for single base resolution using optical techniques.

    Innovative nanopore sequencing technology

    公开(公告)号:US11474094B2

    公开(公告)日:2022-10-18

    申请号:US16215139

    申请日:2018-12-10

    Abstract: Methods and apparatus for long read, label-free, optical nanopore long chain molecule sequencing. In general, the present disclosure describes a novel sequencing technology based on the integration of nanochannels to deliver single long-chain molecules with widely spaced (>wavelength), ˜1-nm aperture “tortuous” nanopores that slow translocation sufficiently to provide massively parallel, single base resolution using optical techniques. A novel, directed self-assembly nanofabrication scheme using simple colloidal nanoparticles is used to form the nanopore arrays atop nanochannels that unfold the long chain molecules. At the surface of the nanoparticle array, strongly localized electromagnetic fields in engineered plasmonic/polaritonic structures allow for single base resolution using optical techniques.

    Fabrication of enclosed nanochannels using silica nanoparticles

    公开(公告)号:US10976299B1

    公开(公告)日:2021-04-13

    申请号:US15944226

    申请日:2018-04-03

    Abstract: In accordance with the disclosure, a method of forming a nanochannel is provided. The method includes depositing a photosensitive film stack over a substrate; forming a pattern on the film stack using interferometric lithography; depositing a plurality of silica nanoparticles to form a structure over the pattern; removing the pattern while retaining the structure formed by the plurality of silica nanoparticles, wherein the structure comprises one or more enclosed nanochannels, wherein each of the one or more nanochannels comprise one or more sidewalls and a roof; and partially sealing the roof of one or more nanochannels, wherein the roof comprises no more than one unsealed nanochannel per squared micron.

    Integrated bound-mode spectral/angular sensors

    公开(公告)号:US10989590B2

    公开(公告)日:2021-04-27

    申请号:US16542505

    申请日:2019-08-16

    Abstract: A 2-D sensor array includes a semiconductor substrate and a plurality of pixels disposed on the semiconductor substrate. Each pixel includes a coupling region and a junction region, and a slab waveguide structure disposed on the semiconductor substrate and extending from the coupling region to the region. The slab waveguide includes a confinement layer disposed between a first cladding layer and a second cladding layer. The first cladding and the second cladding each have a refractive index that is lower than a refractive index of the confinement layer. Each pixel also includes a coupling structure disposed in the coupling region and within the slab waveguide. The coupling structure includes two materials having different indices of refraction arranged as a grating defined by a grating period. The junction region comprises a p-n junction in communication with electrical contacts for biasing and collection of carriers resulting from absorption of incident radiation.

Patent Agency Ranking