Abstract:
Processes and apparatuses for the production of olefins are provided. In an embodiment, a process for production of a process is provided for increasing light olefin yield comprising passing a hydrocarbon feedstream comprising paraffins, naphthenes and aromatic hydrocarbons to a catalytic reforming unit. The hydrocarbon feedstream is contacted with a reforming catalyst under mild reforming conditions suitable for converting naphthenes into aromatics while minimizing conversion of the paraffins, to provide a reforming effluent stream. The reforming effluent stream is passed to a solvent extraction unit to provide an overhead stream comprising predominantly paraffins and a bottoms stream comprising predominantly aromatics. Finally, the overhead stream is passed to a cracking unit to provide a product stream comprising the light olefins.
Abstract:
A process for increasing a yield of an isomerization zone by removing at least a portion of the C6 cyclic hydrocarbons from a stream prior to it being passed into the isomerization zone. Additionally, disproportionation reactions occur producing valuable C3 hydrocarbons and C4 hydrocarbons. Also, a higher ring opening conversion of C5 cyclic hydrocarbons is observed.
Abstract:
A process for controlling a yield of an isomerization zone. Prior to entering the isomerization zone, C6 cyclic hydrocarbons are removed from a feed stream. Disproportionation reaction selectivity is observed which produces valuable C3 hydrocarbons and C4 hydrocarbons. Also, a higher ring opening conversion of C5 cyclic hydrocarbons is observed. The disproportionation reactions and the ring opening reactions may be selectively controlled by adjusting an amount of C6 cyclic hydrocarbons passed into the isomerization zone.
Abstract:
A process increases the concentration of normal paraffins in a feed stream comprising separating a naphtha feed stream into a normal paraffin rich stream and a non-normal paraffin rich stream. A naphtha feed stream may be separated into a normal paraffin stream and a non-normal paraffin stream. An isomerization feed stream is taken from the non-normal paraffin stream and isomerized over an isomerization catalyst to convert non-normal paraffins to normal paraffins and produce an isomerization effluent stream. The isomerization effluent stream may be separated into a propane stream and a C4+ hydrocarbon stream optionally in a single column. The C4+ hydrocarbon stream may be recycled to the step of separating a naphtha feed stream.
Abstract:
A process for producing light olefins comprising thermal cracking. Hydrocracked streams are thermally cracked in a steam cracker to produce light olefins. A pyrolysis gas stream is separated into a light stream and a heavy stream. A light stream is separated into an aromatic naphtha stream and a non-aromatic naphtha stream. The aromatics can be saturated and thermally cracked. The integrated process may be employed to obtain olefin products of high value from a crude stream.
Abstract:
A process increases the concentration of normal paraffins in a feed stream comprising separating a naphtha feed stream into a normal paraffin rich stream and a non-normal paraffin rich stream. A naphtha feed stream may be separated into a normal paraffin stream and a non-normal paraffin stream. An isomerization feed stream may be taken from the non-normal paraffin stream and isomerized over an isomerization catalyst to convert non-normal paraffins to normal paraffins and produce an isomerization effluent stream. The isomerization effluent stream may be separated into a propane stream and a C4+ hydrocarbon stream optionally in a single column. The C4+ hydrocarbon stream may be recycled to the step of separating a naphtha feed stream.
Abstract:
A process for controlling a yield of an isomerization zone. Prior to entering the isomerization zone, C6 cyclic hydrocarbons are removed from a feed stream. Disproportionation reaction selectivity is observed which produces valuable C3 hydrocarbons and C4 hydrocarbons. Also, a higher ring opening conversion of C5 cyclic hydrocarbons is observed. The disproportionation reactions and the ring opening reactions may be selectively controlled by adjusting an amount of C6 cyclic hydrocarbons passed into the isomerization zone.
Abstract:
A process for increasing a yield of an isomerization zone by removing at least a portion of the C6 cyclic hydrocarbons from a stream having iC4 hydrocarbons, iC5 hydrocarbons, and iC6 hydrocarbons prior to the stream being passed into the same isomerization zone. Suppression of the iC4 hydrocarbons does not occur, allowing the iC4 hydrocarbons to be isomerized in the same isomerization zone as the iC5 hydrocarbons and iC6 hydrocarbons.
Abstract:
A process increases the concentration of normal paraffins in a feed stream comprising separating a naphtha feed stream into a normal paraffin rich stream and a non-normal paraffin rich stream. A naphtha feed stream may be separated into a normal paraffin stream and a non-normal paraffin stream. An isomerization feed stream is taken from the non-normal paraffin stream and isomerized over an isomerization catalyst to convert non-normal paraffins to normal paraffins and produce an isomerization effluent stream. The isomerization effluent stream may be separated into a propane stream and a C4+ hydrocarbon stream optionally in a single column. The C4+ hydrocarbon stream may be recycled to the step of separating a naphtha feed stream.
Abstract:
A process increases the concentration of normal paraffins in a feed stream comprising separating a naphtha feed stream into a normal paraffin rich stream and a non-normal paraffin rich stream. The non-normal paraffin rich stream is isomerized over a first isomerization catalyst to convert non-normal paraffins to normal paraffins and produce a first isomerization effluent stream. An iso-C4 stream is separated from the first isomerization effluent stream and isomerized over a second isomerization catalyst to convert iso-C4 hydrocarbons to normal C4 hydrocarbons and produce a second isomerization effluent stream. The normal paraffin rich stream, the normal paraffins in the first isomerization effluent stream and/or the second isomerization effluent stream may be fed to a steam cracker.