Abstract:
An optical display and control element comprises an at least partially transparent display screen, at least one light source for illuminating a rear side of the display screen, and at least one light sensor for detecting a temporal signal of the light scattered on the display screen. The light source is able to produce a time-variable light pattern while illuminating the rear side of the display screen. A control and processing unit is able to evaluate the temporal signal, detected by the light sensor, in combination with the time-variable light pattern and to determine a position of at least one object located on the display screen from this evaluation. The invention further relates to a method of optically determining the position of an object which is located on an at least partially transparent display screen of an optical display and control element.
Abstract:
An optical sensor device has a sensor unit which includes a light emitter (24), a light receiver (26), and a lens plate (12) that is used for coupling a pencil of rays, radiated by the light emitter (24), into and out of the pane and directing it onto the light receiver (26). The lens plate (12) includes a combined Fresnel structure (16a, 16b) having a Fresnel lens structure (18a, 18b) and a Fresnel reflector structure (20a, 20b) on a first surface (12a) facing the light emitter (24) and the light receiver (26), and a Fresnel reflector structure (22a, 22b) on an opposite, second surface (12b) facing the pane. This configuration is especially suitable for use as a rain sensor. Without the light emitter the sensor device is suitable to be used as a light sensor.
Abstract:
An optical sensor device has a sensor unit, which includes a light transmitter, a light receiver and a lens plate, with which a beam of light emitted by the light transmitter is coupled into the window pane, coupled out of the window pane and directed onto the light receiver. On its surface facing the light transmitter and the light receiver, the lens plate includes Fresnel lens structures, and on the opposite surface facing the window pane it includes Fresnel reflector structures. This embodiment is particularly useful as rain sensor. Without light transmitter, the sensor device can be used as a light sensor.
Abstract:
An optical sensor device includes a photoconductor structure having first and second partial members (16, 18) and a coupling surface (20) for coupling the optical sensor device to an opposing counter surface of a pane (22), particularly a windscreen of a motor vehicle. The optical sensor device further includes an optical transmitter (10) coupling a beam of rays into the first partial member (16), an optical receiver (12) receiveing a beam of rays emerging from the second partial member (18), and a printed circuit board (14) arranged parallel to the coupling surface (20). The transmitter (10) and the receiver (12) are arranged on the printed circuit board (14). The photoconductor structure is designed so that the central ray (28) of the transmitter (10) enters into the first partial member (16) perpendicularly to the coupling surface (20) and emerges from the second partial member (18) perpendicularly to the coupling surface (20).
Abstract:
The method operates with successive, continuously repeated measuring cycles. In a first cycle section, a measuring capacitor is charged up to a first threshold value by the current flowing in a light receiver of a first optical measuring section. In a subsequent, second cycle section the measuring capacitor is discharged to a second threshold value by the current flowing in a light receiver of a second optical measuring section. The light transmitters of the optical measuring sections are regulated over several measuring cycles to predetermined rated values for the charging time and the discharging time. A wetting of the pane is concluded from the momentary deviations between the rated values and the actually measured values of the charging times and discharging times. The available modulation range is adapted dynamically to the prevailing conditions by the systematic control of the intensity of the light transmitters in the two optical measuring sections. In addition, the upper limit of the modulation range is extended to higher values of the ambient light.
Abstract:
An electrodynamic actuator (10), has a flat coil (24) formed by tracks (22, 23) on a face of a circuit board (16) and a permanent magnet (14) the magnetic field of which passes through turns of the flat coil (24).
Abstract:
An optical rotation angle transmitter includes a code disc that has a digital coding and an analog coding. The digital coding has multiple tracks and is configured so as to be secure against error. A current angle interval can be determined from a plurality of possible angle intervals by means of the digital coding, and a precise angle position of the code disc can be determined within the current angle interval by means of the analog coding. Each of the tracks of the digital coding has a light sensor associated with it. Further provided is a method of scanning a code disc of a rotation angle transmitter.
Abstract:
An optical sensor device includes a photoconductor structure having first and second partial members (16, 18) and a coupling surface (20) for coupling the optical sensor device to an opposing counter surface of a pane (22), particularly a windscreen of a motor vehicle. The optical sensor device further includes an optical transmitter (10) coupling a beam of rays into the first partial member (16), an optical receiver (12) receiveing a beam of rays emerging from the second partial member (18), and a printed circuit board (14) arranged parallel to the coupling surface (20). The transmitter (10) and the receiver (12) are arranged on the printed circuit board (14). The photoconductor structure is designed so that the central ray (28) of the transmitter (10) enters into the first partial member (16) perpendicularly to the coupling surface (20) and emerges from the second partial member (18) perpendicularly to the coupling surface (20).
Abstract:
A simple optical projection device with a high luminous efficacy has a point light source, a projection screen, a mask that is arranged in the light path upstream of the projection screen and is light-transmissive in some areas, and a light focusing optical lens arranged between the point light source and the mask. The optical lens is selected such that the prolongations of the emerging beams of the optical lens on the side thereof facing the point light source intersect in a virtual perspective center which is more remote from the lens than the point light source.
Abstract:
A capacitive rotary encoder has a stator and a rotor as well as stator electrodes firmly arranged at the stator on an encoding path coaxial to the rotor axis, and coupling electrodes arranged at the rotor. The coupling electrodes are guided over the stator electrodes at a small axial distance from the encoding path by rotation of the rotor, wherein they each cover stator electrodes adjacent in the peripheral direction and connect the latter capacitively to each other. Interrogation electronics detects for each of the stator electrodes a capacitive coupling with an adjacent stator electrode caused by a coupling electrode of the rotor. This permits the reliable detection of the angular position of the rotor both statically and dynamically.