Abstract:
The wafer chuck apparatus has a chuck body that includes an interior and a top surface. A plurality of micro-channel regions is formed in the top surface. Each micro-channel region is defined by an array of micro-channel sections that are in pneumatic communication with each other. The micro-channel regions are pneumatically isolated from each other. One or more vacuum manifold regions are defined in the interior of the chuck body and are in pneumatic communication with corresponding micro-channel regions through respective vacuum holes. The configuration of the micro-channel regions makes the wafer chuck apparatus particularly useful in chucking wafers that have a substantial amount of warp.
Abstract:
A method of processing a reconstituted wafer that supports IC chips includes operably disposing the reconstituted wafer in a lithography tool that has a depth of focus and a focus plane and that defines exposure fields on the reconstituted wafer, wherein each exposure field includes at least one of the IC chips. The method also includes scanning the reconstituted wafer with a line scanner to measure a surface topography of the reconstituted wafer as defined by the IC chips. The method also includes, for each exposure field: i) adjusting a position and/or an orientation of the reconstituted wafer so that a photoresist layers of the IC chips within the given exposure field fall within the depth of focus; and ii) performing an exposure with the lithography tool to pattern the photoresist layers of the IC chips in the given exposure field.
Abstract:
A Wynne-Dyson projection lens for use in an ultraviolet optical lithography system is disclosed, wherein the projection lens is configured to have reduced susceptibility to damage from ultraviolet radiation. The projection lens utilizes lens elements that are made of optical glasses that are resistant to damage from ultraviolet radiation, but that also provide sufficient degrees of freedom to correct aberrations. The glass types used for the lens elements are selected from the group of optical glasses consisting of: fused silica, S-FPL51Y, S-FSL5Y, BSM51Y and BAL15Y.
Abstract:
A method of processing a reconstituted wafer that supports IC chips includes operably disposing the reconstituted wafer in a lithography tool that has a depth of focus and a focus plane and that defines exposure fields on the reconstituted wafer, wherein each exposure field includes at least one of the IC chips. The method also includes scanning the reconstituted wafer with a line scanner to measure a surface topography of the reconstituted wafer as defined by the IC chips. The method also includes, for each exposure field: i) adjusting a position and/or an orientation of the reconstituted wafer so that a photoresist layers of the IC chips within the given exposure field fall within the depth of focus; and ii) performing an exposure with the lithography tool to pattern the photoresist layers of the IC chips in the given exposure field.
Abstract:
A wafer chuck apparatus includes a chuck with a body and a vacuum line system formed within the body. The wafer chuck apparatus has sealing devices each operably disposed in respective recesses formed in the body at an upper surface of the chuck. Each sealing device is contractible between an expanded operating position and a contracted operating position. The top end of each sealing device is configured to form a vacuum seal with a corresponding portion of a backside of a wafer. The sealing devices extend above the upper surface of the chuck higher than typical seals and guide the wafer down to the upper surface of the chuck where it can be engaged by vacuum features that chuck the wafer to the upper surface of the chuck. The sealing devices are particularly useful for chucking warped wafers.
Abstract:
The wafer chuck apparatus has a chuck body that includes an interior and a top surface. A plurality of micro-channel regions is formed in the top surface. Each micro-channel region is defined by an array of micro-channel sections that are in pneumatic communication with each other. The micro-channel regions are pneumatically isolated from each other. One or more vacuum manifold regions are defined in the chuck body interior and are in pneumatic communication with corresponding micro-channel regions through respective vacuum holes. The configuration of the micro-channel regions makes the wafer chuck apparatus particularly useful in chucking wafers that have a substantial amount of warp.
Abstract:
A Wynne-Dyson projection lens for use in an ultraviolet optical lithography system is disclosed, wherein the projection lens is configured to have reduced susceptibility to damage from ultraviolet radiation. The projection lens utilizes lens elements that are made of optical glasses that are resistant to damage from ultraviolet radiation, but that also provide sufficient degrees of freedom to correct aberrations. The glass types used for the lens elements are selected from the group of optical glasses consisting of: fused silica, S-FPL51Y, S-FSL5Y, BSM51Y and BAL15Y.