Abstract:
Systems and methods for reducing pulsed laser beam profile non-uniformities for laser annealing are disclosed. The methods include directing an initial pulsed laser beam along an optical axis, and imparting to each light pulse a time-varying angular deflection relative to the optical axis. This forms a new laser beam wherein each light pulse is smeared out over an amount of spatial deflection δ sufficient to reduce the micro-scale intensity variations in the laser beam. The new laser beam is then used to form the line image, which has better intensity uniformity as compared using the initial laser beam to form the line image.
Abstract:
Provided are systems and methods for processing the surface of substrates that scan a laser beam at one or more selected orientation angles. The orientation angle or angles may be selected to reduce substrate warpage. When the substrates are semiconductor wafers having microelectronic devices, the orientation angles may be selected to produce controlled strain and to improve electronic performance of the devices.
Abstract:
Provided are systems and processes for forming a three-dimensional circuit on a substrate. A radiation source produces a beam that is directed at a substrate having an isolating layer interposed between circuit layers. The circuit layers communicate with each other via a seed region exhibiting a crystalline surface. At least one circuit layer has an initial microstructure that exhibits electronic properties unsuitable for forming circuit features therein. After being controllably heat treated, the initial microstructure of the circuit layer having unsuitable properties is transformed into one that exhibits electronic properties suitable for forming circuit feature therein. Also provided are three-dimensional circuit structures optionally formed by the inventive systems and/or processes.
Abstract:
Provided are systems and methods for processing the surface of substrates that scan a laser beam at one or more selected orientation angles. The orientation angle or angles may be selected to reduce substrate warpage. When the substrates are semiconductor wafers having microelectronic devices, the orientation angles may be selected to produce controlled strain and to improve electronic performance of the devices.
Abstract:
Systems and methods for reducing pulsed laser beam profile non-uniformities for laser annealing are disclosed. The methods include directing an initial pulsed laser beam along an optical axis, and imparting to each light pulse a time-varying angular deflection relative to the optical axis. This forms a new laser beam wherein each light pulse is smeared out over an amount of spatial deflection δ sufficient to reduce the micro-scale intensity variations in the laser beam. The new laser beam is then used to form the line image, which has better intensity uniformity as compared using the initial laser beam to form the line image.