Abstract:
A method for fabricating a semiconductor structure includes forming a plurality of mandrels over a substrate, wherein the substrate comprises a semiconductor substrate as a base. Then, a first dielectric layer is formed to cover on a predetermined mandrel of the mandrels. A second dielectric layer is formed over the substrate to cover the mandrels. The mandrels are removed, wherein a remaining portion of the first dielectric layer and the second dielectric layer at a sidewall of the mandrels remains on the substrate. An anisotropic etching process is performed over the substrate until a top portion of the semiconductor substrate is etched to form a plurality of fins corresponding to the remaining portion of the first dielectric layer and the second dielectric layer.
Abstract:
The present invention further provides a method for forming a semiconductor device, comprising: first, a substrate having a fin structure disposed thereon is provided, wherein the fin structure has a trench, next, a first liner in the trench is formed, a first insulating layer is formed on the first liner, afterwards, a shallow trench isolation is formed in the substrate and surrounding the fin structure, wherein a bottom surface of the shallow trench isolation is higher than a bottom surface of the first insulating layer, and a top surface of the shallow trench isolation is lower than a top surface of the first insulating layer, and a dummy gate structure is formed on the first insulating layer and disposed above the trench, wherein a bottom surface of the dummy gate structure and a top surface of the fin structure are on a same level.
Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate having a fin-shaped structure thereon; forming a first shallow trench isolation (STI) around the fin-shaped structure; dividing the fin-shaped structure into a first portion and a second portion; and forming a second STI between the first portion and the second portion.
Abstract:
First and second semiconductor structures, a CESL, and an ILD layer are formed on a substrate. The first semiconductor structure includes first dummy gate, first nitride mask, and first oxide mask. The second semiconductor structure includes second dummy gate, second nitride mask, and second oxide mask. A first planarization is performed to remove a portion of the ILD layer, exposing CESL. A portion of the CESL, a portion of the ILD layer, the first and the second oxide masks are removed. A hard mask layer is formed on the first and the second nitride masks, and in a recess of the ILD layer. A second planarization is performed to remove a portion of the hard mask layer, the first and the second nitride masks, exposing first and second dummy gates. A remaining portion of the hard mask layer covers the ILD layer.
Abstract:
A semiconductor device and a method of fabricating the same, the semiconductor device includes a substrate, a plurality of fin shaped structures, a first trench and at least one bump. The substrate has a base. The fin shaped structures protrude from the base of the substrate. The first trench recesses from the base of the substrate and has a depth being smaller than a width of each of the fin shaped structures. The at least one bump is disposed on a surface of the first trench.
Abstract:
A semiconductor device and a method of forming the same, the semiconductor device includes a fin shaped structure, a spacer layer and a dummy gate structure. The fin shaped structure is disposed on a substrate, wherein the fin shaped structure has a trench. The spacer layer is disposed on sidewalls of the trench. The dummy gate structure is disposed across the trench and includes a portion thereof disposed in the trench.
Abstract:
A method for manufacturing a semiconductor device is provided, comprising steps of providing a substrate with an underlying layer formed thereon; forming a gate layer overlying the underlying layer; and forming a multi-layer hard mask layer on the gate layer, and the multi-layer hard mask layer comprising a plurality of material layers and a top hard mask formed on the material layers, wherein the gate layer and the top hard mask contain the same element, such as silicon.
Abstract:
A method for fabricating semiconductor device includes the steps of: forming a fin-shaped structure on a substrate; forming a first gate structure and a second gate structure on the fin-shaped structure and an interlayer dielectric (ILD) layer around the first gate structure and the second gate structure; transforming the first gate structure and the second gate structure into a first metal gate and a second metal gate; forming a hard mask on the first metal gate and the second metal gate; removing part of the hard mask, the second metal gate, and part of the fin-shaped structure to form a trench; and forming a dielectric layer into the trench to form a single diffusion break (SDB) structure.
Abstract:
A method for fabricating semiconductor device includes the steps of: forming a fin-shaped structure on a substrate; forming a first gate structure and a second gate structure on the fin-shaped structure and an interlayer dielectric (ILD) layer around the first gate structure and the second gate structure; transforming the first gate structure and the second gate structure into a first metal gate and a second metal gate; forming a hard mask on the first metal gate and the second metal gate; removing part of the hard mask, the second metal gate, and part of the fin-shaped structure to form a trench; and forming a dielectric layer into the trench to form a single diffusion break (SDB) structure.
Abstract:
A semiconductor device is disclosed. The semiconductor device includes a substrate and a gate structure on the substrate. The gate structure includes a high-k dielectric layer on the substrate and a bottom barrier metal (BBM) layer on the high-k dielectric layer. Preferably, the BBM layer includes a top portion, a middle portion, and a bottom portion, in which the top portion being a nitrogen rich portion, and the middle portion and the bottom portion being titanium rich portions.