Abstract:
A semiconductor device includes a substrate, a bonding structure and an adjustment layer. A bonding structure is located over the substrate. The adjustment layer is located on a bonding pad of the bonding structure.
Abstract:
An oxide semiconductor field effect transistor (OSFET) includes a first insulating layer, a source, a drain, a U-shaped channel layer and a metal gate. The first insulating layer is disposed on a substrate. The source and the drain are disposed in the first insulating layer. The U-shaped channel layer is sandwiched by the source and the drain. The metal gate is disposed on the U-shaped channel layer, wherein the U-shaped channel layer includes at least an oxide semiconductor layer. The present invention also provides a method for forming said oxide semiconductor field effect transistor.
Abstract:
An oxide semiconductor device includes a substrate, a first patterned oxide semiconductor layer, a source electrode, a drain electrode, and a sidewall spacer. The first patterned oxide semiconductor layer is disposed on the substrate. The source electrode and the drain electrode are disposed on the first patterned oxide semiconductor layer. The sidewall spacer is disposed on a sidewall of the first patterned oxide semiconductor layer. The sidewall spacer may be used to improve the performance of blocking impurities from entering the first patterned oxide semiconductor layer via the sidewall, and the electrical performance and the reliability of the oxide semiconductor device may be enhanced accordingly.
Abstract:
An oxide semiconductor device includes a substrate, a first patterned oxide semiconductor layer, a source electrode, a drain electrode, and a sidewall spacer. The first patterned oxide semiconductor layer is disposed on the substrate. The source electrode and the drain electrode are disposed on the first patterned oxide semiconductor layer. The sidewall spacer is disposed on a sidewall of the first patterned oxide semiconductor layer. The sidewall spacer may be used to improve the performance of blocking impurities from entering the first patterned oxide semiconductor layer via the sidewall, and the electrical performance and the reliability of the oxide semiconductor device may be enhanced accordingly.
Abstract:
The present invention provides a complementary metal oxide semiconductor device, comprising a PMOS and an NMOS. The PMOS has a P type metal gate, which comprises a bottom barrier layer, a P work function metal (PWFM) layer, an N work function tuning (NWFT) layer, an N work function metal (NWFM) layer and a metal layer. The NMOS has an N type metal gate, which comprises the NWFT layer, the NWFM layer and the low-resistance layer. The present invention further provides a method of forming the same.
Abstract:
A manufacturing method of semiconductor devices having metal gate includes following steps. A substrate having a first semiconductor device and a second semiconductor device formed thereon is provided. The first semiconductor device includes a first gate trench and the second semiconductor device includes a second gate trench. A first work function metal layer is formed in the first gate trench and the second gate trench. A portion of the first work function metal layer is removed from the second gate trench. A second work function metal layer is formed in the first gate trench and the second gate trench. The second work function metal layer and the first work function metal layer include the same metal material. A third work function metal layer and a gap-filling metal layer are sequentially formed in the first gate trench and the second gate trench.
Abstract:
A manufacturing method of semiconductor devices having metal gate includes following steps. A substrate having a first semiconductor device and a second semiconductor device formed thereon is provided. The first semiconductor device includes a first gate trench and the second semiconductor device includes a second gate trench. A first work function metal layer is formed in the first gate trench and the second gate trench. A portion of the first work function metal layer is removed from the second gate trench. A second work function metal layer is formed in the first gate trench and the second gate trench. The second work function metal layer and the first work function metal layer include the same metal material. A third work function metal layer and a gap-filling metal layer are sequentially formed in the first gate trench and the second gate trench.
Abstract:
An oxide semiconductor field effect transistor (OSFET) includes a first insulating layer, a source, a drain, a U-shaped channel layer and a metal gate. The first insulating layer is disposed on a substrate. The source and the drain are disposed in the first insulating layer. The U-shaped channel layer is sandwiched by the source and the drain. The metal gate is disposed on the U-shaped channel layer, wherein the U-shaped channel layer includes at least an oxide semiconductor layer. The present invention also provides a method for forming said oxide semiconductor field effect transistor.
Abstract:
A structure of semiconductor device is provided. The structure includes a first bonding pattern, formed on a first substrate. A first grating pattern is disposed on the first substrate, having a plurality of first bars extending along a first direction. A second bonding pattern is formed on a second substrate. A second grating pattern, disposed on the second substrate, having a plurality of second bars extending along the first direction. The first bonding pattern is bonded to the second bonding pattern. One of the first grating pattern and the second grating pattern is stacked over and overlapping at the first direction with another one of the first grating pattern and the second grating pattern. A first gap between adjacent two of the first bars is different from a second gap between adjacent two of the second bars.
Abstract:
An oxide semiconductor field effect transistor (OSFET) includes a first insulating layer, a source, a drain, a U-shaped channel layer and a metal gate. The first insulating layer is disposed on a substrate. The source and the drain are disposed in the first insulating layer. The U-shaped channel layer is sandwiched by the source and the drain. The metal gate is disposed on the U-shaped channel layer, wherein the U-shaped channel layer includes at least an oxide semiconductor layer. The present invention also provides a method for forming said oxide semiconductor field effect transistor.