Abstract:
A magnetic tunnel junction (MTJ) device includes two magnetic tunnel junction elements and a magnetic shielding layer. The two magnetic tunnel junction elements are arranged side by side. The magnetic shielding layer is disposed between the magnetic tunnel junction elements. A method of forming said magnetic tunnel junction (MTJ) device includes the following steps. An interlayer including a magnetic shielding layer is formed. The interlayer is etched to form recesses in the interlayer. The magnetic tunnel junction elements fill in the recesses. Or, a method of forming said magnetic tunnel junction (MTJ) device includes the following steps. A magnetic tunnel junction layer is formed. The magnetic tunnel junction layer is patterned to form magnetic tunnel junction elements. An interlayer including a magnetic shielding layer is formed between the magnetic tunnel junction elements.
Abstract:
A magnetic tunnel junction (MTJ) device includes two magnetic tunnel junction elements and a magnetic shielding layer. The two magnetic tunnel junction elements are arranged side by side. The magnetic shielding layer is disposed between the magnetic tunnel junction elements. A method of forming said magnetic tunnel junction (MTJ) device includes the following steps. An interlayer including a magnetic shielding layer is formed. The interlayer is etched to form recesses in the interlayer. The magnetic tunnel junction elements fill in the recesses. Or, a method of forming said magnetic tunnel junction (MTJ) device includes the following steps. A magnetic tunnel junction layer is formed. The magnetic tunnel junction layer is patterned to form magnetic tunnel junction elements. An interlayer including a magnetic shielding layer is formed between the magnetic tunnel junction elements.
Abstract:
A magnetic tunnel junction (MTJ) device includes two magnetic tunnel junction elements and a magnetic shielding layer. The two magnetic tunnel junction elements are arranged side by side. The magnetic shielding layer is disposed between the magnetic tunnel junction elements. A method of forming said magnetic tunnel junction (MTJ) device includes the following steps. An interlayer including a magnetic shielding layer is formed. The interlayer is etched to form recesses in the interlayer. The magnetic tunnel junction elements fill in the recesses. Or, a method of forming said magnetic tunnel junction (MTJ) device includes the following steps. A magnetic tunnel junction layer is formed. The magnetic tunnel junction layer is patterned to form magnetic tunnel junction elements. An interlayer including a magnetic shielding layer is formed between the magnetic tunnel junction elements.
Abstract:
The present invention provides a capacitor structure, including a bottom plate and a top plate, wherein the top plate has a first sidewall, and wherein an area of the top plate is less than an area of the bottom plate. The capacitor structure further includes a dielectric layer in between the bottom plate and the top plate, the dielectric layer having a second sidewall, wherein the first sidewall is aligned with the second sidewall, and at least one sidewall spacer placed against the first sidewall of the top plate and the second sidewall of the dielectric layer, and overlaying a portion of the bottom plate.
Abstract:
The present invention provides a non-planar FET and a method of manufacturing the same. The non-planar FET includes a substrate, a fin structure, a gate and a gate dielectric layer. The fin structure is disposed on the substrate. The fin structure includes a first portion adjacent to the substrate wherein the first portion shrinks towards a side of the substrate. The gate is disposed on the fin structure. The gate dielectric layer is disposed between the fin structure and the gate. The present invention further provides a method of manufacturing the non-planar FET.
Abstract:
A semiconductor device including a substrate, a spacer and a high-k dielectric layer having a U-shape profile is provided. The spacer located on the substrate surrounds and defines a trench. The high-k dielectric layer having a U-shape profile is located in the trench, and the high-k dielectric layer having a U-shape profile exposes an upper portion of the sidewalls of the trench.
Abstract:
A semiconductor device includes a semiconductor substrate, at least a first fin structure, at least a second fin structure, a first gate, a second gate, a first source/drain region and a second source/drain region. The semiconductor substrate has at least a first active region to dispose the first fin structure and at least a second active region to dispose the second fin structure. The first/second fin structure partially overlapped by the first/second gate has a first/second stress, and the first stress and the second stress are different from each other. The first/second source/drain region is disposed in the first/second fin structure at two sides of the first/second gate.
Abstract:
A through silicon via structure is located in a recess of a substrate. The through silicon via structure includes a barrier layer, a buffer layer and a conductive layer. The barrier layer covers a surface of the recess. The buffer layer covers the barrier layer. The conductive layer is located on the buffer layer and fills the recess, wherein the contact surface between the conductive layer and the buffer layer is smoother than the contact surface between the buffer layer and the barrier layer. Moreover, a through silicon via process forming said through silicon via structure is also provided.
Abstract:
Provided is a semiconductor device including a substrate, a gate structure, a second dielectric layer and a source/drain region. A first dielectric layer is disposed on the substrate, and the first dielectric layer has a trench therein. The gate structure is disposed on the substrate in the trench and includes a work function metal layer and a metal layer. The work function metal layer is disposed in the trench, and includes a TiAl3 phase metal layer. A height of the work function metal layer disposed on a sidewall of the trench is lower than a height of a top surface of the first dielectric layer. The metal layer fills the trench. The second dielectric layer is disposed between the gate structure and the substrate. The source/drain region is disposed in the substrate at two sides of the gate structure.
Abstract:
A method for forming a FinFET structure includes providing a substrate, a first region and a second region being defined on the substrate, a first fin structure and a second fin structure being disposed on the substrate within the first region and the second region respectively. A first oxide layer cover the first fin structure and the second fin structure. Next a first protective layer and a second protective layer are entirely formed on the substrate and the first oxide layer in sequence, the second protective layer within the first region is removed, and the first protective layer within the first region is then removed. Afterwards, the first oxide layer covering the first fin structure and the second protective layer within the second region are removed simultaneously, and a second oxide layer is formed to cover the first fin structure.